
Chapter 1 

Introduction 

In this first chapter, we introduce the ideas behind optimization and 
optimal control and provide a brief history of calculus of variations and 
optimal control. Also, a brief summary of chapter contents is presented. 

1.1 Classical and Modern Control 
The classical (conventional) control theory concerned with single input 
and single output (8180) is mainly based on Laplace transforms the­
ory and its use in system representation in block diagram form. From 
Figure 1.1, we see that 
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where s is Laplace variable and we used 

(1.1.2) 

Note that 

1. the input u(t) to the plant is determined by the error e(t) and 
the compensator, and 

2. all the variables are not readily available for feedback. In most 
cases only one output variable is available for feedback. 

The modern control theory concerned with multiple inputs and multi­
ple outputs (MIMO) is based on state variable representation in terms 
of a set of first order differential (or difference) equations. Here, the 
system (plant) is characterized by state variables, say, in linear, time­
invariant form as 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

(1.1.3) 

(1.1.4) 

where, dot denotes differentiation with respect to (w.r.t.) t, x(t), u(t), 
and y( t) are n, r, and m dimensional state, control, and output vectors 
respectively, and A is nxn state, B is nxr input, Cis mxn output, and D 
is mxr transfer matrices. Similarly, a nonlinear system is characterized 
by 

x(t) = f(x(t), u(t), t) 

y(t) = g(x(t), u(t), t). 

(1.1.5) 

(1.1.6) 

The modern theory dictates that all the state variables should be fed 
back after suitable weighting. We see from Figure 1.2 that in modern 
control configuration, 

1. the input u( t) is determined by the controller (consisting of er­
ror detector and compensator) driven by system states x(t) and 
reference signal r ( t ) , 

2. all or most of the state variables are available for control, and 

3. it depends on well-established matrix theory, which is amenable 
for large scale computer simulation. 
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Figure 1.2 Modern Control Configuration 

The fact that the state variable representation uniquely specifies the 
transfer function while there are a number of state variable representa­
tions for a given transfer function, reveals the fact that state variable 
representation is a more complete description of a system. 

Figure 1.3 shows components of a modern control system. It shows 
three components of modern control and their important contributors. 
The first stage of any control system theory is to obtain or formulate 
the dynamics or modeling in terms of dynamical equations such as dif­
ferential or difference equations. The system dynamics is largely based 
on the Lagrangian function. Next, the system is analyzed for its perfor­
mance to find out mainly stability of the system and the contributions 
of Lyapunov to stability theory are well known. Finally, if the system 
performance is not according to our specifications, we resort to design 
[25, 109]. In optimal control theory, the design is usually with respect 
to a performance index. We notice that although the concepts such as 
Lagrange function [85] and V function of Lyapunov [94] are old, the 
techniques using those concepts are modern. Again, as the phrase mod­
ern usually refers to time and what is modern today becomes ancient 
after a few years, a more appropriate thing is to label them as optimal 
control, nonlinear control, adaptive control, robust control and so on. 
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Figure 1.3 Components of a Modern Control System 

1.2 Optimization 
Optimization is a very desirable feature in day-to-day life. We like to 
work and use our time in an optimum manner, use resources optimally 
and so on. The subject of optimization is quite general in the sense 
that it can be viewed in different ways depending on the approach (al­
gebraic or geometric), the interest (single or multiple), the nature of the 
signals (deterministic or stochastic), and the stage (single or multiple) 
used in optimization. This is shown in Figure 1.4. As we notice that 
the calculus of variations is one small area of the big picture of the op­
timization field, and it forms the basis for our study of optimal control 
systems. Further, optimization can be classified as static optimization 
and dynamic optimization. 

1. Static Optimization is concerned with controlling a plant under 
steady state conditions, i.e., the system variables are not chang­
ing with respect to time. The plant is then described by algebraic 
equations. Techniques used are ordinary calculus, Lagrange mul­
tipliers, linear and nonlinear programming. 

2. Dynamic Optimization concerns with the optimal control of 
plants under dynamic conditions, i.e., the system variables are 
changing with respect to time and thus the time is involved in 
system description. Then the plant is described by differential 
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(or difference) equations. Techniques used are search techniques, 
dynamic programming, variational calculus (or calculus of varia­
tions) and Pontryagin principle. 

1.3 Optimal Control 

The main objective of optimal control is to determine control signals 
that will cause a process (plant) to satisfy some physical constraints 
and at the same time extremize (maximize or minimize) a chosen per­
formance criterion (performance index or cost function). Referring to 
Figure 1.2, we are interested in finding the optimal control u*(t) (* in­
dicates optimal condition) that will drive the plant P from initial state 
to final state with some constraints on controls and states and at the 
same time extremizing the given performance index J. 

The formulation of optimal control problem requires 

1. a mathematical description (or model) of the process to be con­
trolled (generally in state variable form), 

2. a specification of the performance index, and 

3. a statement of boundary conditions and the physical constraints 
on the states and/or controls. 

1.3.1 Plant 

For the purpose of optimization, we describe a physical plant by a set of 
linear or nonlinear differential or difference equations. For example, a 
linear time-invariant system is described by the state and output rela­
tions (1.1.3) and (1.1.4) and a nonlinear system by (1.1.5) and (1.1.6). 

1.3.2 Performance Index 

Classical control design techniques have been successfully applied to lin­
ear, time-invariant, single-input, single output (8180) systems. Typical 
performance criteria are system time response to step or ramp input 
characterized by rise time, settling time, peak overshoot, and steady 
state accuracy; and the frequency response of the system characterized 
by gain and phase margins, and bandwidth. 

In modern control theory, the optimal control problem is to find a 
control which causes the dynamical system to reach a target or fol-
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low a state variable (or trajectory) and at the same time extremize a 
performance index which may take several forms as described below. 

1. Performance Index for Time-Optimal Control System: 
We try to transfer a system from an arbitrary initial state x(to) to 
a specified final state x( t f) in minimum time. The corresponding 
performance index (PI) is 

it! 
J = dt = t f - to = t*. 

to 
(1.3.1 ) 

2. Performance Index for Fuel-Optimal Control System: Con­
sider a spacecraft problem. Let u(t) be the thrust of a rocket 
engine and assume that the magnitude I u( t) I of the thrust is pro­
portional to the rate of fuel consumption. In order to minimize 
the total expenditure of fuel, we may formulate the performance 
index as 

it! 
J = lu(t)ldt. 

to 
(1.3.2) 

For several controls, we may write it as 

(1.3.3) 

where R is a weighting factor. 

3. Performance Index for Minimum-Energy Control Sys­
tem: Consider Ui (t) as the current in the ith loop of an electric 
network. Then 2:i!1 u;(t)ri (where, ri is the resistance of the ith 
loop) is the total power or the total rate of energy expenditure of 
the network. Then, for minimization of the total expended energy, 
we have a performance criterion as 

(1.3.4) 

or in general, 

it! 
J = u'(t)Ru(t)dt 

to 
(1.3.5) 
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where, R is a positive definite matrix and prime (') denotes trans­
pose here and throughout this book (see Appendix A for more 
details on definite matrices). 

Similarly, we can think of minimization of the integral of the 
squared error of a tracking system. We then have, 

it! 
J = x/(t)Qx(t)dt 

to 
(1.3.6) 

where, Xd(t) is the desired value, xa(t) is the actual value, and 
x(t) = xa(t) - Xd(t), is the error. Here, Q is a weighting matrix, 
which can be positive semi-definite. 

4. Performance Index for Terminal Control System: In a ter­
minal target problem, we are interested in minimizing the error 
between the desired target position Xd (t f) and the actual target 
position Xa (t f) at the end of the maneuver or at the final time t f. 
The terminal (final) error is x ( t f) = Xa ( t f) - Xd ( t f ). Taking care 
of positive and negative values of error and weighting factors, we 
structure the cost function as 

(1.3.7) 

which is also called the terminal cost function. Here, F is a positive 
semi-definite matrix. 

5. Performance Index for General Optimal Control System: 
Combining the above formulations, we have a performance index 
in general form as 

it! 
J = x/(tf)Fx(tf) + [X/(t)QX(t) + u/(t)Ru(t)]dt 

to 
(1.3.8) 

or, 

it! 
J = S(x(tf),tf) + V(x(t),u(t),t)dt 

to 
(1.3.9) 

where, R is a positive definite matrix, and Q and F are positive 
semidefinite matrices, respectively. Note that the matrices Q and 
R may be time varying. The particular form of performance index 
(1.3.8) is called quadratic (in terms of the states and controls) 
form. 
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The problems arising in optimal control are classified based on the 
structure of the performance index J [67]. If the PI (1.3.9) contains 
the terminal cost function S(x(t), u(t), t) only, it is called the Mayer 
problem, if the PI (1.3.9) has only the integral cost term, it is called 
the Lagrange problem, and the problem is of the Bolza type if the PI 
contains both the terminal cost term and the integral cost term as in 
(1.3.9). There are many other forms of cost functions depending on our 
performance specifications. However, the above mentioned performance 
indices (with quadratic forms) lead to some very elegant results in 
optimal control systems. 

1.3.3 Constraints 

The control u( t) and state x( t) vectors are either unconstrained or 
constrained depending upon the physical situation. The unconstrained 
problem is less involved and gives rise to some elegant results. From the 
physical considerations, often we have the controls and states, such as 
currents and voltages in an electrical circuit, speed of a motor, thrust 
of a rocket, constrained as 

(1.3.10) 

where, +, and - indicate the maximum and minimum values the vari­
ables can attain. 

1.3.4 Formal Statement of Optimal Control System 

Let us now state formally the optimal control problem even risking rep­
etition of some of the previous equations. The optimal control problem 
is to find the optimal control u*(t) (* indicates extremal or optimal 
value) which causes the linear time-invariant plant (system) 

x(t) = Ax(t) + Bu(t) (1.3.11) 

to give the trajectory x* (t) that optimizes or extremizes (minimizes or 
maximizes) a performance index 

J = x'(tf)Fx(tf) + J.tJ 
[x'(t)Qx(t) + u'(t)Ru(t)]dt (1.3.12) 

to 

or which causes the nonlinear system 

x(t) = f(x(t), u(t), t) (1.3.13) 
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to give the state x*(t) that optimizes the general performance index 

itf 
J = S(x(tj), tf) + V(x(t), u(t), t)dt 

to 
(1.3.14) 

with some constraints on the control variables u( t) and/or the state 
variables x(t) given by (1.3.10). The final time tf may be fixed, or free, 
and the final (target) state may be fully or partially fixed or free. The 
entire problem statement is also shown pictorially in Figure 1.5. Thus, 
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Figure 1.5 Optimal Control Problem 

we are basically interested in finding the control u*(t) which when 
applied to the plant described by (1.3.11) or (1.3.13), gives an optimal 
performance index J* described by (1.3.12) or (1.3.14). 

The optimal control systems are studied in three stages. 

1. In the first stage, we just consider the performance index of the 
form (1.3.14) and use the well-known theory of calculus of varia­
tions to obtain optimal functions. 

2. In the second stage, we bring in the plant (1.3.11) and try to 
address the problem of finding optimal control u*(t) which will 
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drive the plant and at the same time optimize the performance 
index (1.3.12). Next, the above topics are presented in discrete­
time domain. 

3. Finally, the topic of constraints on the controls and states (1.3.10) 
is considered along with the plant and performance index to ob­
tain optimal control. 

1.4 Historical Tour 
We basically consider two stages of the tour: first the development of 
calculus of variations, and secondly, optimal control theory [134, 58, 
99, 28]1. 

1.4.1 Calculus oj Variations 

According to a legend [88], Tyrian princess Dido used a rope made 
of cowhide in the form of a circular arc to maximize the area to be 
occupied to found Carthage. Although the story of the founding of 
Carthage is fictitious, it probably inspired a new mathematical dis­
cipline, the calculus of variations and its extensions such as optimal 
control theory. 

The calculus of variations is that branch of mathematics that deals 
with finding a function which is an extremum (maximum or minimum) 
of a functional. A functional is loosely defined as a function of a func­
tion. The theory of finding maxima and minima of functions is quite 
old and can be traced back to the isoperimetric problems considered 
by Greek mathematicians such as Zenodorus (495-435 B.C.) and by 
Poppus (c. 300 A.D.). But we will start with the works of Bernoulli. In 
1699 Johannes Bernoulli (1667-1748) posed the brachistochrone prob­
lem: the problem of finding the path of quickest descent between two 
points not in the same horizontal or vertical line. This problem which 
was first posed by Galileo (1564-1642) in 1638, was solved by John, 
his brother Jacob (1654- 1705), by Gottfried Leibniz (1646-1716), and 
anonymously by Isaac Newton (1642-1727). Leonard Euler (1707-1783) 
joined John Bernoulli and made some remarkable contributions, which 
influenced Joseph-Louis Lagrange (1736-1813), who finally gave an el-

IThe permission given by Springer-Verlag for H. H. Goldstine, A History of the Calculus 
of Variations, Springer-Verlag, New York, NY, 1980, is hereby acknowledged. 



12 Chapter 1: Introduction 

egant way of solving these types of problems by using the method 
of (first) variations. This led Euler to coin the phrase calculus of vari­
ations. Later this necessary condition for extrema of a functional 
was called the Euler - the Lagrange equation. Lagrange went on to 
treat variable end - point problems introducing the multiplier method, 
which later became one of the most powerful tools-Lagrange (or Euler­
Lagrange) multiplier method-in optimization. 

The sufficient conditions for finding the extrema of functionals in cal­
culus of variations was given by Andrien Marie Legendre (1752-1833) 
in 1786 by considering additionally the second variation. Carl Gustav 
Jacob Jacobi (1804-1851) in 1836 came up with a more rigorous anal­
ysis of the sufficient conditions. This sufficient condition was later on 
termed as the Legendre-Jacobi condition. At about the same time Sir 
William Rowan Hamilton (1788-1856) did some remarkable work on 
mechanics, by showing that the motion of a particle in space, acted 
upon by various external forces, could be represented by a single func­
tion which satisfies two first-order partial differential equations. In 1838 
Jacobi had some objections to this work and showed the need for only 
one partial differential equation. This equation, called Hamilton-Jacobi 
equation, later had profound influence on the calculus of variations and 
dynamic programming, optimal control, and as well as on mechanics. 

The distinction between strong and weak extrema was addressed by 
Karl Weierstrass (1815-1897) who came up with the idea of the field 
of extremals and gave the Weierstrass condition, and sufficient condi­
tions for weak and strong extrema. Rudolph Clebsch (1833-1872) and 
Adolph Mayer proceeded with establishing conditions for the more gen­
eral class of problems. Clebsch formulated a problem in the calculus of 
variations by adjoining the constraint conditions in the form of differ­
ential equations and provided a condition based on second variation. 
In 1868 Mayer reconsidered Clebsch's work and gave some elegant re­
sults for the general problem in the calculus of variations. Later Mayer 
described in detail the problems: the problem of Lagrange in 1878, and 
the problem of Mayer in 1895. 

In 1898, Adolf Kneser gave a new approach to the calculus of varia­
tions by using the result of Karl Gauss (1777-1855) on geodesics. For 
variable end-point problems, he established the transversality condi­
tion which includes orthogonality as a special case. He along with 
Oskar Bolza (1857-1942) gave sufficiency proofs for these problems. 
In 1900, David Hilbert (1862-1943) showed the second variation as a 
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quadratic functional with eigenvalues and eigenfunctions. Between 1908 
and 1910, Gilbert Bliss (1876-1951) [23] and Max Mason looked in 
depth at the results of Kneser. In 1913, Bolza formulated the problem 
of Bolza as a generalization of the problems of Lagrange and Mayer. 
Bliss showed that these three problems are equivalent. Other notable 
contributions to calculus of variations were made by E. J. McShane 
(1904-1989) [98], M. R. Hestenes [65], H. H. Goldstine and others. 
There have been a large number of books on the subject of calculus 
of variations: Bliss (1946) [23], Cicala (1957) [37], Akhiezer (1962) [1], 
Elsgolts (1962) [47], Gelfand and Fomin (1963) [55], Dreyfus (1966) 
[45], Forray (1968) [50], Balakrishnan (1969) [8], Young (1969) [146], 
Elsgolts (1970) [46], Bolza (1973) [26], Smith (1974) [126], Weinstock 
(1974) [143], Krasnov et al. (1975) [81], Leitmann (1981) [88], Ew­
ing (1985) [48], Kamien and Schwartz (1991) [78], Gregory and Lin 
(1992) [61], Sagan (1992) [118], Pinch (1993) [108], Wan (1994) [141], 
Giaquinta and Hildebrandt (1995) [56, 57], Troutman (1996) [136], and 
Milyutin and Osmolovskii (1998) [103]. 

1.4.2 Optimal Control Theory 

The linear quadratic control problem has its origins in the celebrated 
work of N. Wiener on mean-square filtering for weapon fire control dur­
ing World War II (1940-45) [144, 145]. Wiener solved the problem of 
designing filters that minimize a mean-square-error criterion (perfor­
mance measure) of the form 

(1.4.1) 

where, e( t) is the error, and E {x} represents the expected value of the 
random variable x. For a deterministic case, the above error criterion 
is generalized as an integral quadratic term as 

J = 10
00 

e'(t)Qe(t)dt (1.4.2) 

where, Q is some positive definite matrix. R. Bellman in 1957 [12] 
introduced the technique of dynamic programming to solve discrete­
time optimal control problems. But, the most important contribution 
to optimal control systems was made in 1956 [25] by L. S. Pontryagin 
(formerly of the United Soviet Socialistic Republic (USSR)) and his as­
sociates, in development of his celebrated maximum principle described 
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in detail in their book [109]. Also, see a very interesting article on the 
"discovery of the Maximum Principle" by R. V. Gamkrelidze [52], one 
of the authors of the original book [109]. At this time in the United 
States, R. E. Kalman in 1960 [70] provided linear quadratic regulator 
(LQR) and linear quadratic Gaussian (LQG) theory to design optimal 
feedback controls. He went on to present optimal filtering and estima­
tion theory leading to his famous discrete Kalman filter [71] and the 
continuous Kalman filter with Bucy [76]. Kalman had a profound ef­
fect on optimal control theory and the Kalman filter is one of the most 
widely used technique in applications of control theory to real world 
problems in a variety of fields. 

At this point we have to mention the matrix Riccati equation that 
appears in all the Kalman filtering techniques and many other fields. 
C. J. Riccati [114, 22] published his result in 1724 on the solution for 
some types of nonlinear differential equations, without ever knowing 
that the Riccati equation would become so famous after more than two 
centuries! 

Thus, optimal control, having its roots in calculus of variations de­
veloped during 16th and 17th centuries was really born over 300 years 
ago [132]. For additional details about the historical perspectives on 
calculus of variations and optimal control, the reader is referred to some 
excellent publications [58, 99, 28, 21, 132]. 

In the so-called linear quadratic control, the term "linear" refers to 
the plant being linear and the term "quadratic" refers to the perfor­
mance index that involves the square or quadratic of an error, and/or 
control. Originally, this problem was called the mean-square control 
problem and the term "linear quadratic" did not appear in the litera­
ture until the late 1950s. 

Basically the classical control theory using frequency domain deals 
with single input and single output (SIS0) systems, whereas modern 
control theory works with time domain for SISO and multi-input and 
multi-output (MIMO) systems. Although modern control and hence 
optimal control appeared to be very attractive, it lacked a very impor­
tant feature of robustness. That is, controllers designed based on LQR 
theory failed to be robust to measurement noise, external disturbances 
and unmodeled dynamics. On the other hand, frequency domain tech­
niques using the ideas of gain margin and phase margin offer robustness 
in a natural way. Thus, some researchers [115, 95], especially in the 
United Kingdom, continued to work on developing frequency domain 
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approaches to MIMO systems. 
One important and relevant field that has been developed around 

the 1980s is the Hoo-optimal control theory. In this framework, the 
work developed in the 1960s and 1970s is labeled as H2-optimal control 
theory. The seeds for Hoo-optimal control theory were laid by G. Zames 
[148], who formulated the optimal Hoo-sensitivity design problem for 
SISO systems and solved using optimal N evanilina-Pick interpolation 
theory. An important publication in this field came from a group of four 
active researchers, Doyle, Glover, Khargonekar, and Francis[44], who 
won the 1991 W. R. G. Baker Award as the best IEEE Transactions 
paper. There are many other works in the field of Hoo control ([51, 96, 
43, 128, 7, 60, 131, 150, 39, 34]). 

1.5 About This Book 
This book, on the subject of optimal control systems, is based on the 
author's lecture notes used for teaching a graduate level course on this 
subject. In particular, this author was most influenced by Athans and 
Falb [6], Schultz and Melsa [121], Sage [119], Kirk [79], Sage and White 
[120], Anderson and Moore [3] and Lewis and Syrmos [91], and one 
finds the footprints of these works in the present book. 

There were a good number of books on optimal control published 
during the era of the "glory of modern control," (Leitmann (1964) [87], 
Tou (1964) [135], Athans and Falb (1966) [6], Dreyfus (1966) [45], Lee 
and Markus (1967) [86], Petrov (1968) [106], Sage (1968) [119], Citron 
(1969) [38], Luenberger (1969) [93], Pierre (1969) [107], Pun (1969) 
[110], Young (1969) [146], Kirk (1970) [79], Boltyanskii [24], Kwaker­
naak and Sivan (1972) [84], Warga (1972) [142], Berkovitz (1974) [17], 
Bryson and Ho (1975) [30]), Sage and White (1977) [120], Leitmann 
(1981) [88]), Ryan (1982) [116]). There has been renewed interest with 
the second wave of books published during the last few years (Lewis 
(1986) [89], Stengal (1986) [127], Christensen et al. (1987) [36] Ander­
son and Moore (1990) [3], Hocking (1991) [66], Teo et al. (1991) [133], 
Gregory and Lin (1992) [61], Lewis (1992) [90], Pinch (1993) [108], Do­
rato et al. (1995) [42], Lewis and Syrmos (1995) [91]), Saberi et al. 
(1995) [117], Sima (1996) [124], Siouris [125], Troutman (1996) [136] 
Bardi and Dolcetta (1997) [9], Vincent and Grantham (1997) [139], 
Milyutin and Osmolovskii (1998) [103], Bryson (1999) [29], Burl [32], 
Kolosov (1999) [80], Pytlak (1999) [111], Vinter (2000) [140], Zelikin 
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(2000) [149], Betts (2001) [20], and Locatelli (2001) [92]. 
The optimal control theory continues to have a wide variety of appli­

cations starting from the traditional electrical power [36] to economics 
and management [16, 122, 78, 123]. 

1.6 Chapter Overview 
This book is composed of seven chapters. Chapter 2 presents opti­
mal control via calculus of variations. In this chapter, we start with 
some basic definitions and a simple variational problem of extremizing 
a functional. We then bring in the plant as a conditional optimization 
problem and discuss various types of problems based on the bound­
ary conditions. We briefly mention both Lagrangian and Hamiltonian 
formalisms for optimization. Next, Chapter 3 addresses basically the 
linear quadratic regulator (LQR) system. Here we discuss the closed­
loop optimal control system introducing matrix Riccati differential and 
algebraic equations. We look at the analytical solution to the Riccati 
equations and development of MATLAB© routine for the analytical 
solution. Tracking and other problems of linear quadratic optimal con­
trol are discussed in Chapter 4. We also discuss the gain and phase 
margins of the LQR system. 

So far the optimal control of continuous-time systems is described. 
Next, the optimal control of discrete-time systems is presented in Chap­
ter 5. Here, we start with the basic calculus of variations and then touch 
upon all the topics discussed above with respect to the continuous-time 
systems. The Pontryagin Principle and associated topics of dynamic 
programming and Hamilton-Jacobi-Bellman results are briefly covered 
in Chapter 6. The optimal control of systems with control and state 
constraints is described in Chapter 7. Here, we cover topics of control 
constraints leading to time-optimal, fuel-optimal and energy-optimal 
control systems and briefly discuss the state constraints problem. 

Finally, the Appendices A and B provide summary of results on ma­
trices, vectors, matrix algebra and state space, and Appendix C lists 
some of the MATLAB© files used in the book. 
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1. 7 Problems 

Problem 1.1 A D.C. motor speed control system is described by a 
second order state equation, 

:h (t) = 25x2(t) 

X2(t) = -400Xl(t) - 200X2(t) + 400u(t) , 

where, Xl(t) = the speed of the motor, and X2(t) = the current in 
the armature circuit and the control input u( t) = the voltage input 
to an amplifier supplying the motor. Formulate a performance index 
and optimal control problem to keep the speed constant at a particular 
value. 

Problem 1.2 [83] In a liquid-level control system for a storage tank, 
the valves connecting a reservoir and the tank are controlled by gear 
train driven by a D. C. motor and an electronic amplifier. The dynamics 
is described by a third order system 

Xl(t) = -2Xl(t) 

X2(t) = X3(t) 

X3(t) = -10X3(t) + 9000u(t) 

where, Xl(t) = is the height in the tank, X2(t) = is the angular posi­
tion of the electric motor driving the valves controlling the liquid from 
reservoir to tank, X3(t) = the angular velocity of the motor, and u(t) = 

is the input to electronic amplifier connected to the input of the motor. 
Formulate optimal control problem to keep the liquid level constant at 
a reference value and the system to act only if there is a change in the 
liquid level. 

Problem 1.3 [35] In an inverted pendulum system, it is required to 
maintain the upright position of the pendulum on a cart. The linearized 
state equations are 

Xl(t) = X2(t) 

X2(t) = -X3(t) + O.2u(t) 

X3(t) = X4(t) 

X4(t) = 10x3(t) - O.2u(t) 
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where, Xl (t) = is horizontal linear displacement of the cart, X2(t) = is 
linear velocity of the cart, X3(t) = is angular position of the pendulum 
from vertical line, X4(t) = is angular velocity, and u(t) = is the horizon­
tal force applied to the cart. Formulate a performance index to keep 
the pendulum in the vertical position with as little energy as possible. 

Problem 1.4 [101J A mechanical system consisting of two masses and 
two springs, one spring connecting the two masses and the other spring 
connecting one of the masses to a fixed point. An input is applied to 
the mass not connected to the fixed point. The displacements (XI(t) 
and X2 (t)) and the corresponding velocities (X3 (t) and X4 (t)) of the two 
masses provide a fourth-order system described by 

XI(t) = X3(t) 

X2(t) = X4(t) 

X3(t) = -4XI(t) + 2X2(t) 

X4(t) = XI(t) - X2(t) + u(t) 

Formulate a performance index to minimize the errors in displacements 
and velocities and to minimize the control effort. 

Problem 1.5 A simplified model of an automobile suspension system 
is described by 

mx(t) + kx(t) = bu(t) 

where, x(t) is the position, u(t) is the input to the suspension system 
(in the form of an upward force), m is the mass of the suspension 
system, and k is the spring constant. Formulate the optimal control 
problem for minimum control energy and passenger comfort. Assume 
suitable values for all the constants. 

Problem 1.6 [112J Consider a continuous stirred tank chemical reac­
tor described by 

XI(t) = -O.lXI(t) - 0.12x2(t) 
X2(t) = -0.3XI(t) - 0.012x2(t) - 0.07u(t) 

where, the normalized deviation state variables of the linearized model 
are Xl (t) = reaction variable, X2 (t) = temperature and the control 
variable u(t) = effective cooling rate coefficient. Formulate a suitable 
performance measure to minimize the deviation errors and to minimize 
the control effort. 



Chapter 2 

Calculus of Variations 
and Optimal Control 

Calculus of variations (Co V) or variational calculus deals with finding 
the optimum (maximum or minimum) value of a functional. Varia­
tional calculus that originated around 1696 became an independent 
mathematical discipline after the fundamental discoveries of L. Euler 
(1709-1783), whom we can claim with good reason as the founder of 
calculus of variations. 

In this chapter, we start with some basic definitions and a simple 
variational problem of extremizing a functional. We then incorporate 
the plant as a conditional optimization problem and discuss various 
types of problems based on the boundary conditions. We briefly men­
tion both the Lagrangian and Hamiltonian formalisms for optimization. 
It is suggested that the student reviews the material in Appendices A 
and B given at the end of the book. This chapter is motivated by 
[47, 79, 46, 143, 81, 48]1. 

2.1 Basic Concepts 
2.1.1 Function and Functional 

We discuss some fundamental concepts associated with functionals along 
side with those of functions. 
(a) Function: A variable x is a function of a variable quantity t, (writ-

IThe permission given by Prentice Hall for D. E. Kirk, Optimal Control Theory: An Intro­
duction, Prentice Hall, Englewood Cliffs, NJ, 1970, is hereby acknowledged. 
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ten as x(t) = !(t)), if to every value of t over a certain range of t there 
corresponds a value x; i.e., we have a correspondence: to a number t 
there corresponds a number x. Note that here t need not be always 
time but any independent variable. 

Example 2.1 

Consider 

x(t) = 2t2 + 1. (2.1.1 ) 

For t = 1, x = 3, t = 2, x = 9 and so on. Other functions are 
x(t) = 2t; X(tb t2) = tt + t§. 

N ext we consider the definition of a functional based on that of a 
function. 
(b) Functional: A variable quantity J is a functional dependent on a 
function ! (x), written as J = J (f (x) ), if to each function f (x), there 
corresponds a value J, i.e., we have a correspondence: to the function 
f (x) there corresponds a number J. Functional depends on several 
functions. 

Example 2.2 

Let x(t) = 2t2 + 1. Then 

{I (I 2 5 
J(x(t)) = io x(t)dt = io (2t2 + l)dt = 3 + 1 = 3 (2.1.2) 

is the area under the curve x(t). If v(t) is the velocity of a vehicle, 
then 

l
ti 

J ( v ( t )) = v ( t ) dt 
to 

(2.1.3) 

is the path traversed by the vehicle. Thus, here x(t) and v(t) are 
functions of t, and J is a functional of x(t) or v(t). 

Loosely speaking, a functional can be thought of as a "function of a 
function." 

2.1.2 Increment 

We consider here increment of a function and a functional. 
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(a) Increment of a Function: In order to consider optimal values 
of a function, we need the definition of an increment [47, 46, 79]. 

DEFINITION 2.1 The increment of the function I, denoted by ~/, is 
defined as 

~/~/(t + ~t) - I(t). (2.1.4) 

It is easy to see from the definition that ~I depends on both the 
independent variable t and the increment of the independent variable 
~t, and hence strictly speaking, we need to write the increment of a 
function as ~/(t, ~t). 

Example 2.3 

If 

find the increment of the function I ( t) . 

Solution: The increment ~I becomes 

~I ~ I(t + ~t) - I(t) 

= (tl + ~iI + t2 + ~t2? - (tl + t2)2 
= (tl + ~tl)2 + (t2 + ~t2)2 + 2(iI + ~h)(t2 + ~t2) -

(tI + t§ + 2tlt2) 
= 2(tl + t2)~tl + 2(tl + t2)~t2 + (~tl)2 + (~t2)2 

(2.1.5) 

+2~tl~t2. (2.1.6) 

(b) Increment of a Functional: Now we are ready to define the 
increment of a functional. 

DEFINITION 2.2 The increment of the functional J, denoted by ~J, is 
defined as 

I ~J~J(x(t) + 8x(t)) - J(x(t))·1 (2.1. 7) 

Here 8x(t) is called the variation of the function x(t). Since the in­
crement of a functional is dependent upon the function x(t) and its 
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variation 8x(t), strictly speaking, we need to write the increment as 
ilJ(x(t),8x(t)). 

Example 2.4 

Find the increment of the functional 

(2.1.8) 

Solution: The increment of J is given by 

ilJ ~ J(x(t) + 8x(t)) - J(x(t)), 

= it! [2(x(t) + 8x(t))2 + 1] dt _it! [2x2(t) + 1] dt, 
to to 

it! 
= [4x(t)8x(t) + 2(8x(t) )2] dt. (2.1.9) 

to 

2.1.3 Differential and Variation 

Here, we consider the differential of a function and the variation of a 
functional. 
(a) Differential of a Function: Let us define at a point t* the 
increment of the function J as 

ilf~J(t* + ilt) - J(t*). (2.1.10) 

By expanding J (t* + ilt) in a Taylor series about t*, we get 

Af = f(t') + (:), At + :, (~n, (At)2 + ... - f(t*). (2.1.11) 

Neglecting the higher order terms in ilt, 

Af = (:) * At = j(t*)At = df. (2.1.12) 

Here, df is called the differential of J at the point t*. j(t*) is the 
derivative or slope of J at t*. In other words, the differential dJ is 
the first order approximation to increment ilt. Figure 2.1 shows the 
relation between increment, differential and derivative. 
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f(t) 

f(t* +~t) ....... '. . .. ... . ......... ' 

[(to) ~:~~~ ~ [ ... :. : ::t ~ .. .1~. 
. ~t 
:~ . 

o t* t*+~t t 

Figure 2.1 Increment fl.j, Differential dj, and Derivative j of a 
Function j ( t) 

Example 2.5 

Let j(t) = t2 + 2t. Find the increment and the derivative of the 
function j ( t). 

Solution: By definition, the increment fl.j is 

fl.j £ j(t + fl.t) - j(t), 

= (t + fl.t)2 + 2(t + fl.t) - (t2 + 2t), 
= 2tfl.t + 2fl.t + ... + higher order terms, 
= 2(t + l)fl.t, 
= j(t)fl.t. 

Here, j(t) = 2(t + 1). 

(2.1.13) 

(b) Variation of a Functional: Consider the increment of a func­
tional 

fl.J£J(x(t) + 8x(t)) - J(x(t)). (2.1.14) 
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Expanding J(x(t) + 8x(t)) in a Taylor series, we get 

{)J 1 {)2 J 
jj.J = J(x(t)) + -{) 8x(t) + -, {) 2 (8x(t))2 + ... - J(x(t)) 

x 2. x 
{)J 1 {)2J 2 

= {)x 8x(t) + 2! {)x2 (8x(t)) + ... 

= 8 J + 82 J + ... , (2.1.15) 

where, 

{)J 
8J = {)x 8x(t) and (2.1.16) 

are called the first variation (or simply the variation) and the second 
variation of the functional J, respectively. The variation 8 J of a func­
tional J is the linear (or first order approximate) part (in 8x(t)) of the 
increment jj.J. Figure 2.2 shows the relation between increment and 
the first variation of a functional. 

J(x(t» 

J(x*(t)+Ox(t» . . . . . . . . . .. ... . ......... , 

. J(x*(t» ... .:. : J ~~ .. .1~. 
:.. ~ 

: ox(t): 

o x*(t) x*(t)+ Ox(t) x(t) 

Figure 2.2 Increment jj.J and the First Variation 8J of the 
Functional J 
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Example 2.6 

Given the functional 

it! 
J(x(t)) = [2x2(t) + 3x(t) + 4]dt, 

to 
(2.1.17) 

evaluate the variation of the functional. 

Solution: First, we form the increment and then extract the vari­
ation as the first order approximation. Thus 

~J ~ J(x(t) + 8x(t)) - J(x(t)), 

it! 
= [2(x(t) + 8x(t))2 + 3(x(t) + 8x(t)) + 4) 

to 

-(2x2(t) + 3x(t) + 4)] dt, 

it! 
= [4x(t)8x(t) + 2(8x(t))2 + 38x(t)] dt. 

to 
(2.1.18) 

Considering only the first order terms, we get the (first) variation 
as 

it! 
8J(x(t),8x(t)) = (4x(t) + 3)8x(t)dt. 

to 
(2.1.19) 

2.2 Optimum of a Function and a Functional 
We give some definitions for optimum or extremum (maximum or min­
imum) of a function and a functional [47, 46, 79]. The variation plays 
the same role in determining optimal value of a functional as the dif­
ferential does in finding extremal or optimal value of a function. 

DEFINITION 2.3 Optimum of a Function: A function f (t) is said 
to have a relative optimum at the point t* if there is a positive parameter E 

such that for all points t in a domain V that satisfy It - t* I < E, the increment 
of f(t) has the same sign (positive or negative). 

In other words, if 

~f = f(t) - f(t*) 2:: 0, (2.2.1) 
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Figure 2.3 (a) Minimum and (b) Maximum of a Function f (t) 

then, f(t*) is a relative local minimum. On the other hand, if 

b.f = f(t) - f(t*) ~ 0, (2.2.2) 

then, f (t*) is a relative local maximum. If the previous relations are 
valid for arbitrarily large E, then, f(t*) is said to have a global absolute 
optimum. Figure 2.3 illustrates the (a) minimum and (b) maximum of 
a function. 

It is well known that the necessary condition for optimum of a func­
tion is that the (first) differential vanishes, i.e., df = O. The sufficient 
condition 
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1. for minimum is that the second differential is positive, 
i.e., d2 f > 0, and 

2. for maximum is that the second differential is negative, 
i.e., d2 f < 0. 

If d2 f = 0, it corresponds to a stationary (or inflection) point. 

27 

DEFINITION 2.4 Optimum of a Functional: A functional J is 
said to have a relative optimum at x* if there is a positive E such that for all 
functions x in a domain n which satisfy Ix - x* I < E, the increment of J has 
the same sign. 

In other words, if 

!1J = J(x) - J(x*) ~ 0, (2.2.3) 

then J(x*) is a relative minimum. On the other hand, if 

!1J = J(x) - J(x*) ~ 0, (2.2.4) 

then, J(x*) is a relative maximum. If the above relations are satisfied 
for arbitrarily large E, then, J(x*) is a global absolute optimum. 

Analogous to finding extremum or optimal values for functions, in 
variational problems concerning functionals, the result is that the vari­
ation must be zero on, an optimal curve. Let us now state the result in 
the form of a theorem, known as fundamental theorem of the calculus 
of variations, the proof of which can be found in any book on calculus 
of variations [47, 46, 79]. 

THEOREM 2.1 
For x*(t) to be a candidate for an optimum, the (first) variation of J must 

be zero on x*(t), i.e., 6J(x*(t), 6x(t)) = ° for all admissible values of 6x(t). 
This is a necessary condition. As a sufficient condition for minimum, the 
second variation 62 J > 0, and for maximum 62 J < 0. 

2.3 The Basic Variational Problem 
2.3.1 Fixed-End Time and Fixed-End State System 

We address a fixed-end time and fixed-end state problem, where both 
the initial time and state and the final time and state are fixed or given 
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a priori. Let x(t) be a scalar function with continuous first derivatives 
and the vector case can be similarly dealt with. The problem is to find 
the optimal function x* (t) for which the functional 

it! 
J(x(t)) = V(x(t), x(t), t)dt 

to 
(2.3.1) 

has a relative optimum. It is assumed that the integrand V has con­
tinuous first and second partial derivatives w.r.t. all its arguments; to 
and t f are fixed (or given a priori) and the end points are fixed, i.e., 

x(t = to) = Xo; x(t = tf) = xf' (2.3.2) 

We already know from Theorem 2.1 that the necessary condition for 
an optimum is that the variation of a functional vanishes. Hence, in 
our attempt to find the optimum of x(t), we first define the increment 
for J, obtain its variation and finally apply the fundamental theorem 
of the calculus of variations (Theorem 2.1). 

Thus, the various steps involved in finding the optimal solution to 
the fixed-end time and fixed-end state system are first listed and then 
discussed in detail. 

• Step 1: Assumption of an Optimum 

• Step 2: Variations and Increment 

• Step 3: First Variation 

• Step 4: Fundamental Theorem 

• Step 5: Fundamental Lemma 

• Step 6: Euler-Lagrange Equation 

• Step 1: Assumption of an Optimum: Let us assume that x*(t) is 
the optimum attained for the function x(t). Take some admissible 
function xa(t) = x*(t) + 8x(t) close to x*(t), where 8x(t) is the 
variation of x*(t) as shown in Figure 2.4. The function xa(t) 
should also satisfy the boundary conditions (2.3.2) and hence it 
is necessary that 

(2.3.3) 
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x(t) 

xo ..... . 

o 

Figure 2.4 Fixed-End Time and Fixed-End State System 

• Step 2: Variations and Increment: Let us first define the incre­
ment as 

6.J(x*(t), 8x(t)) ~ J(x*(t) + 8x(t), x*(t) + 8x(t), t) 

-J(x*(t), x*(t), t) 

I
t! 

= V (x*(t) + 8x(t), x*(t) + 8x(t), t) dt 
to 

I
t! 

- V(x*(t), x*(t), t)dt. 
to 

(2.3.4) 

which by combining the integrals can be written as 

I
t! 

6.J(x*(t), 8x(t)) = [V (x*(t) + 8x(t), x*(t) + 8x(t), t) 
to 

- V(x* (t), x*(t), t)] dt. (2.3.5) 

where, 

x(t) = d:~t) and 8x(t) = :t {8x(t)} (2.3.6) 

Expanding V in the increment (2.3.5) in a Taylor series about 
the point x*(t) and x*(t), the increment 6.J becomes (note the 
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cancelation of V(x*(t), x*(t), t)) 

~J = ~J(x*(t), 8x(t)) 

= l' [8V(X*(~~X*(t), t) 6x(t) + 8V(X*(~~ x*(t), t) 6x(t) 

~ {82
V( ... ) (8 ())2 8

2
V( ... ) (8· ( ))2 + 2! 8x2 x t + 8x2 X t + 

+ 2~:~~·) 6x (t)6x (t) } + .. -] dt. (2.3.7) 

Here, the partial derivatives are w.r.t. x(t) and x(t) at the opti­
mal condition (*) and * is omitted for simplicity . 

• Step 3: First Variation: Now, we obtain the variation by retain­
ing the terms that are linear in 8x(t) and 8x(t) as 

8J(x*(t),8x(t)) = it! [8V(X*(t), x*(t), t) 8x(t) 
to 8x 
8V(x*(t), x*(t), t)8· ( )] d + 8x x t t. (2.3.8) 

To express the relation for the first variation (2.3.8) entirely in 
terms containing 8x(t) (since 8x(t) is dependent on 8x(t)), we 
integrate by parts the term involving 8x(t) as (omitting the ar­
guments in V for simplicity) 

1:' (~~) * 6x(t)dt = 1:' (~~) * ! (6x(t))dt 

= 1:' (~~) * d(6x(t)), 

= [( ~~) * 6X(t{: 

_it! 8x(t)~ (8~) dt. 
to dt 8x * 

(2.3.9) 

In the above, we used the well-known integration formula J udv = 

uv - J vdu where u = 8V/8X and v = 8x(t)). Using (2.3.9), the 
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relation (2.3.8) for first variation becomes 

8J(x*(t),6x(t)) = {' (~:) * 6x(t)dt + [( ~~) * 6X(t)[ 

_ rtf !i (a~) 8x(t)dt, 
lto dt ax * 

= rtf [(av) _!i (a~) ]8x(t)dt 
lto ax * dt ax * 

+ [( ~~) * 6x(t)] I:: . (2.3.10) 

Using the relation (2.3.3) for boundary variations in (2.3.10), we 
get 

8J(x*(t),6x(t)) = 1:' [( ~:) * - :t (~~) .l6X(t)dt. (2.3.11) 

• Step 4: Fundamental Theorem: We now apply the fundamental 
theorem of the calculus of variations (Theorem 2.1), i.e., the vari­
ation of J must vanish for an optimum. That is, for the optimum 
x*(t) to exist, 8J(x*(t),8x(t)) = O. Thus the relation (2.3.11) 
becomes 

rtf [(av) _!i (a~) ]8X(t)dt = O. 
lto ax * dt ax * 

(2.3.12) 

Note that the function 8x(t) must be zero at to and tf, but for 
this, it is completely arbitrary . 

• Step 5: Fundamental Lemma: To simplify the condition ob­
tained in the equation (2.3.12), let us take advantage of the fol­
lowing lemma called the fundamental lemma of the calculus of 
variations [47, 46, 79]. 

LEMMA 2.1 

If for every function g(t) which is continuous, 

l
tf 

g(t)8x(t)dt = 0 
to 

(2.3.13) 
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where the function 8x(t) is continuous in the interval [to, tf]' then the 
function 9 ( t) must be zero everywhere throughout the interval [to, t f] . 
(see Figure 2.5.) 

Proof: We prove this by contradiction. Let us assume that g(t) is 
nonzero (positive or negative) during a short interval [ta, tb]. Next, let 
us select 8x(t), which is arbitrary, to be positive (or negative) through­
out the interval where 9 ( t) has a nonzero value. By this selection 
of 8x(t), the value of the integral in (2.3.13) will be nonzero. This 
contradicts our assumption that g( t) is non-zero during the interval. 
Thus g( t) must be identically zero everywhere during the entire inter­
val [to, tf] in (2.3.13). Hence the lemma. 

get) 

t 

8x(t) 

Figure 2.5 A Nonzero g(t) and an Arbitrary 8x(t) 

• Step 6: Euler-Lagrange Equation: Applying the previous lemma 
to (2.3.12), a necessary condition for x*(t) to be an optimal of 
the functional J given by (2.3.1) is 

(
av(x*(t),x*(t),t)) _ ~ (av(x*(t),.x*(t),t)) = 0 (2.3.14) 

ax * dt ax * 
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or in simplified notation omitting the arguments in V, 

(aV) _!i (aV) = 0 
ax * dt ax * 

(2.3.15) 

for all t E [to, tf]. This equation is called Euler equation, first 
published in 1741 [126]. 

A historical note is worthy of mention. 

Euler obtained the equation (2.3.14) in 1741 using an elab­
orate and cumbersome procedure. Lagrange studied Euler's 
results and wrote a letter to Euler in 1755 in which he ob­
tained the previous equation by a more elegant method of 
"variations" as described above. Euler recognized the sim-
plicity and generality of the method of Lagrange and intro­
duced the name calculus of variations. The all important 
fundamental equation (2.3.14) is now generally known as 
Euler-Lagrange (E.-L') equation after these two great math­
ematicians of the 18th century. Lagrange worked further 
on optimization and came up with the well-known Lagrange 
multiplier rule or method. 

2.3.2 Discussion on Euler-Lagrange Equation 

We provide some comments on the Euler-Lagrange equation [47,46]. 

1. The Euler-Lagrange equation (2.3.14) can be written in many 
different forms. Thus (2.3.14) becomes 

d 
V - - (V·) = 0 

x dt x 
(2.3.16) 

where, 

Vx = ~: = Vx(x*(t), ±*(t), t); Vi; = ~~ = Vi;(X*(t), x*(t), t). 

(2.3.17) 

Since V is a function of three arguments x*(t), x*(t), and t, and 
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that x*(t) and x*(t) are in turn functions of t, we get 

Combining (2.3.16) and (2.3.18), we get an alternate form for 
the EL equation as 

(2.3.19) 

2. The presence of -it and/or x*(t) in the EL equation (2.3.14) means 
that it is a differential equation. 

3. In the EL equation (2.3.14), the term aV(x*(~i:x*(t),t) is in general 
a function of x*(t), x*(t), and t. Thus when this function is 
differentiated w.r.t. t, x*(t) may be present. This means that the 
differential equation (2.3.14) is in general of second order. This is 
also evident from the alternate form (2.3.19) for the EL equation. 

4. There may also be terms involving products or powers of x* (t), 
x*(t), and x*(t), in which case, the differential equation becomes 
nonlinear. 

5. The explicit presence of t in the arguments indicates that the 
coefficients may be time-varying. 

6. The conditions at initial point t = to and final point t = t f leads 
to a boundary value problem. 

7. Thus, the Euler-Lagrange equation (2.3.14) is, in general, a non­
linear, time-varying, two-point boundary value, second order, or­
dinary differential equation. Thus, we often have a nonlinear 
two-point boundary value problem (TPBVP). The solution of the 
nonlinear TPBVP is quite a formidable task and often done us­
ing numerical techniques. This is the price we pay for demanding 
optimal performance! 
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8. Compliance with the Euler-Lagrange equation is only a necessary 
condition for the optimum. Optimal may sometimes not yield 
either a maximum or a minimum; just as inflection points where 
the derivative vanishes in differential calculus. However, if the 
Euler-Lagrange equation is not satisfied for any function, this 
indicates that the optimum does not exist for that functional. 

2.3.3 Different Cases for Euler-Lagrange Equation 

We now discuss various cases of the EL equation. 
Case 1: V is dependent of x(t), and t. That is, V = V(x(t), t). Then 
Vx = O. The Euler-Lagrange equation (2.3.16) becomes 

This leads us to 

d 
dt (Vx) = o. 

V
x
' = oV(x*(t), t) = C 

ox 

where, C is a constant of integration. 

(2.3.20) 

(2.3.21) 

Case 2: V is dependent of x(t) only. That is, V = V(x(t)). Then 
Vx = O. The Euler-Lagrange equation (2.3.16) becomes 

d 
dt (Vx) = 0 ~ Vx = C. (2.3.22) 

In general, the solution of either (2.3.21) or (2.3.22) becomes 

(2.3.23) 

This is simply an equation of a straight line. 
Case 3: V is dependent of x(t) and x(t). That is, V = V(x(t), x(t)). 
Then vtx = O. Using the other form of the Euler-Lagrange equation 
(2.3.19), we get 

Vx - Vxxx*(t) - Vxxx*(t) = O. (2.3.24) 

Multiplying the previous equation by x*(t), we have 

x*(t) [Vx - Vxxx*(t) - Vxxx*(t)] = o. (2.3.25) 

This can be rewritten as 

! (V - x*(t)Vx) = 0 ~ V - x*(t)Vx = C. (2.3.26) 



36 Chapter 2: Calculus of Variations and Optimal Control 

The previous equation can be solved using any of the techniques such 
as, separation of variables. 
Case 4: V is dependent of x(t), and t, i.e., V = V(x(t), t). Then, 
Vi; = 0 and the Euler-Lagrange equation (2.3.16) becomes 

8V(x*(t), t) = 0 
ax . (2.3.27) 

The solution of this equation does not contain any arbitrary constants 
and therefore generally speaking does not satisfy the boundary con­
ditions x(to) and x(tf). Hence, in general, no solution exists for this 
variational problem. Only in rare cases, when the function x(t) satisfies 
the given boundary conditions x(to) and x(tf), it becomes an optimal 
function. 

Let us now illustrate the application of the EL equation with a very 
simple classic example of finding the shortest distance between two 
points. Often, we omit the * (which indicates an optimal or extremal 
value) during the working of a problem and attach the same to the final 
solution. 

Example 2.7 

Find the minimum length between any two points. 

Solution: It is well known that the solution to this problem is a 
straight line. However, we like to illustrate the application of Euler­
Lagrange equation for this simple case. Consider the arc between 
two points A and B as shown in Figure 2.6. Let ds be the small arc 
length, and dx and dt are the small rectangular coordinate values. 
Note that t is the independent variable representing distance and 
not time. Then, 

(2.3.28) 

Rewriting 

ds = VI + x2(t)dt, where x(t) = ~~. (2.3.29) 

N ow the total arc length S between two points x (t = to) and x (t = 
t f) is the performance index J to be minimized. Thus, 

S = J = J ds = rtf VI + x2 (t)dt = rtf V(x(t))dt (2.3.30) 
Jto Jto 
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x(t) 

xo ... 'A:: 

o 

Figure 2.6 Arc Length 

where, V(x(t)) = Jl + x2 (t). Note that V is a function of x(t) 
only. Applying the Euler-Lagrange equation (2.3.22) to the perfor­
mance index (2.3.30), we get 

x*(t) _ C 

VI + X*2(t) - . 

Solving this equation, we get the optimal solution as 

x*(t) = C1t + C2 . 

(2.3.31) 

(2.3.32) 

This is evidently an equation for a straight line and the constants 
C1 and C2 are evaluated from the given boundary conditions. For 
example, if x(O) = 1 and x(2) = 5, C1 = 2 and C2 = 1 the straight 
line is x*(t) = 2t + 1. 

Although the previous example is a simple one, 

1. it illustrates the formulation of a performance index from a given 
simple specification or a statement, and 

2. the solution is well known a priori so that we can easily verify 
the application of the Euler-Lagrange equation. 

In the previous example, we notice that the integrand V in the func­
tional (2.3.30), is a function of x(t) only. Next, we take an example, 
where, V is a function of x(t), x(t) and t. 
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Example 2.8 

Find the optimum of 

J = l [:i;2(t) - 2tX(t)] dt 

that satisfy the boundary (initial and final) conditions 

x(O) = 1 and x(2) = 5. 

(2.3.33) 

(2.3.34) 

Solution: In the EL equation (2.3.19), we first identify that V = 
x2(t) - 2tx(t). Then applying the EL equation (2.3.15) to the 
performance index (2.3.33) we get 

av _ ~ (av) = 0 ----+ -2t - ~ (2x(t)) = 0 ax dt ax dt 
----+ x(t) = t. 

Solving the previous simple differential equation, we have 

t 3 

x*(t) ="6 + CIt + C2 

(2.3.35) 

(2.3.36) 

where, C1 and C2 are constants of integration. Using the given 
boundary conditions (2.3.19) in (2.3.36), we have 

4 
x(O) = 1 ----+ C2 = 1, x(2) = 5 ----+ C1 = 3' (2.3.37) 

With these values for the constants, we finally have the optimal 
function as 

t 3 4 
x*(t) = "6 + "3 t + 1. (2.3.38) 

Another classical example in the calculus of variations is the brachis­
tochrone (from brachisto, the shortest, and chrones, time) problem and 
this problem is dealt with in almost all books on calculus of variations 
[126]. 

Further, note that we have considered here only the so-called fixed­
end point problem where both (initial and final) ends are fixed or given 
in advance. Other types of problems such as free-end point problems 
are not presented here but can be found in most of the books on the 
calculus of variations [79, 46, 81, 48]. However, these free-end point 
problems are better considered later in this chapter when we discuss 
the optimal control problem consisting of a performance index and a 
physical plant. 
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2.4 The Second Variation 
In the study of extrema of functionals, we have so far considered only 
the necessary condition for a functional to have a relative or weak ex­
tremum, i.e., the condition that the first variation vanish leading to 
the classic Euler-Lagrange equation. To establish the nature of opti­
mum (maximum or minimum), it is required to examine the second 
variation. In the relation (2.3.7) for the increment consider the terms 
corresponding to the second variation [120], 

8
2 
J = f :! [( ~~) . (8x(t))2 + (~:~) • (8X(t))2 

+ 2 (::;x) * 8X(t)8X(t)] dt. (2.4.1) 

Consider the last term in the previous equation and rewrite it in terms 
of 8x(t) only using integration by parts (f udv = uv - f vdu where, 

u = :;¥X8x(t) and v = 8x(t)). Then using 8x(to) = 8x(tf) = 0 for 
fixed-end conditions, we get 

82 J = ~ rtf [{ (82V) _!i ( 8
2V.) } (8x(t))2 

2 ltD 8x2 dt 8x8x 
* * 

+ (~:~). (8X(t))2] dt. (2.4.2) 

According to Theorem 2.1, the fundamental theorem of the calculus of 
variations, the sufficient condition for a minimum is 82 J > O. This, for 
arbitrary values of 8x(t) and 8x(t), means that 

(8
2V) d (82V) 

8x2 * - dt 8x8x * > 0, 
(2.4.3) 

(8
2V) 

8x2 * > O. (2.4.4) 

For maximum, the signs of the previous conditions are reversed. Al­
ternatively, we can rewrite the second variation (2.4.1) in matrix form 
as 

2 1 tf . 8x2 8x8± 8x(t) 

[ 
82V 82V] 

8 J = 210 [8x(t) 8x(t)] ::rx ~:'; * [8X(t) ] dt 

1 rtf . [8X(t)] = "2 ltD [8x(t) 8x(t)]II 8x(t) dt (2.4.5) 
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where, 

(2.4.6) 

If the matrix II in the previous equation is positive (negative) definite, 
we establish a minimum (maximum). In many cases since 8x(t) is 
arbitrary, the coefficient of (8x(t))2, i.e., 82V /8x2 determines the sign 
of 82 J. That is, the sign of second variation agrees with the sign of 
82V / 8x2. Thus, for minimization requirement 

(2.4.7) 

For maximization, the sign of the previous equation reverses. In the 
literature, this condition is called Legendre condition [126]. 

In 1786, Legendre obtained this result of deciding whether a 
given optimum is maximum or minimum by examining the 
second variation. The second variation technique was fur­
ther generalized by Jacobi in 1836 and hence this condition 
is usually called Legendre-Jacobi condition. 

Example 2.9 

Verify that the straight line represents the minimum distance be­
tween two points. 

Solution: This is an obvious solution, however, we illustrate the 
second variation. Earlier in Example 2.7, we have formulated a 
functional for the distance between two points as 

(2.4.8) 

and found that the optimum is a straight line x*(t) = Clt + C2. To 
satisfy the sufficiency condition (2.4.7), we find 

x*(t) 1 
3/2

. (2.4.9) 
[1+x*2(t)] 

Since x*(t) is a constant (+ve or -ve) , the previous equation satisfies 
the condition (2.4.7). Hence, the distance between two points as 
given by x*(t) (straight line) is minimum. 
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Next, we begin the second stage of optimal control. We consider op­
timization (or extremization) of a functional with a plant, which is 
considered as a constraint or a condition along with the functional. In 
other words, we address the extremization of a functional with some 
condition, which is in the form of a plant equation. The plant takes 
the form of state equation leading us to optimal control of dynamic 
systems. This section is motivated by [6, 79, 120, 108]. 

2.5 Extrema of Functions with Conditions 
We begin with an example of finding the extrema of a function under 
a condition (or constraint). We solve this example with two methods, 
first by direct method and then by Lagrange multiplier method. Let us 
note that we consider this simple example only to illustrate some basic 
concepts associated with conditional extremization [120]. 

Example 2.10 

A manufacturer wants to maximize the volume of the material 
stored in a circular tank subject to the condition that the mate­
rial used for the tank is limited (constant). Thus, for a constant 
thickness of the material, the manufacturer wants to minimize the 
volume of the material used and hence part of the cost for the tank. 

Solution: If a fixed metal thickness is assumed, this condition im­
plies that the cross-sectional area of the tank material is constant. 
Let d and h be the diameter and the height of the circular tank. 
Then the volume contained by the tank is 

V(d, h) = wd2h/4 (2.5.1) 

and the cross-sectional surface area (upper, lower and side) of the 
tank is 

A(d, h) = 2wd2 /4 + wdh = Ao. (2.5.2) 

Our intent is to maximize V(d, h) keeping A(d, h) = Ao, where Ao 
is a given constant. We discuss two methods: first one is called the 
Direct Method using simple calculus and the second one is called 
Lagrange Multiplier Method using the Lagrange multiplier method. 

1 Direct Method: In solving for the optimum value directly, we 
eliminate one of the variables, say h, from the volume relation 
(2.5.1) using the area relation (2.5.2). By doing so, the condition is 
embedded in the original function to be extremized. From (2.5.2), 

h 
= Ao - wd2/2 

7rd . (2.5.3) 
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Using the relation (2.5.3) for height in the relation (2.5.1) for vol­
ume 

(2.5.4) 

Now, to find the extrema of this simple calculus problem, we dif­
ferentiate (2.5.4) w.r.t. d and set it to zero to get 

~o _ ~7rd2 = O. (2.5.5) 

Solving, we get the optimal value of d as 

d* = J2Ao . 
37r 

(2.5.6) 

By demanding that as per the Definition 2.3 for optimum of a 
function, the second derivative of V w.r.t. d in (2.5.4) be neg­
ative for maximum, we can easily see that the positive value of 
the square root function corresponds to the maximum value of the 
function. Substituting the optimal value of the diameter (2.5.6) in 
the original cross-sectional area given by (2.5.2), and solving for 
the optimum h *, we get 

h* = J2AO
• 

37r 
(2.5.7) 

Thus, we see from (2.5.6) and (2.5.7) that the volume stored by a 
tank is maximized if the height of the tank is made equal to its 
diameter. 

2 Lagrange Multiplier Method: Now we solve the above prob­
lem by applying Lagrange multiplier method. We form a new func­
tion to be extremized by adjoining a given condition to the original 
function. The new adjoined function is extremized in the normal 
way by taking the partial derivatives w.r. t. all its variables, making 
them equal to zero, and solving for these variables which are ex­
tremals. Let the original volume relation (2.5.1) to be extremized 
be rewritten as 

f(d, h) = 7rd2h/4 

and the condition (2.5.2) to be satisfied as 

g(d, h) = 27rd2/4 + 7rdh - Ao = O. 

(2.5.8) 

(2.5.9) 

Then a new adjoint function £, (called Lagrangian) is formed as 

£'(d, h, -\) = f(d, h) + -\g(d, h) 

= 7rd2h/4 + -\(27rd2/4 + 7rdh - Ao) (2.5.10) 
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where, A, a parameter yet to be determined, is called the Lagrange 
multiplier. Now, since the Lagrangian C is a function of three 
optimal variables d, h, and A, we take the partial derivatives of 
£(d, h, A) w.r.t. each of the variables d, h and A and set them to 
zero. Thus, 

ac 
ad = 7rdh/2 + A(7rd + 7rh) = 0 

ac 
ah = 7rd

2
/4 + A(7rd) = 0 

ac 2 
aA = 27rd /4 + 7rdh - Ao = o. 

(2.5.11 ) 

(2.5.12) 

(2.5.13) 

Now, solving the previous three relations (2.5.11) to (2.5.13) for 
the three variables d*, h *, and A *, we get 

d* = J2A
O; h* = J2AO

; ,X* = -J Ao . 
37r 37r 247r 

(2.5.14) 

Once again, to maximize the volume of a cylindrical tank, we need 
to have the height (h *) equal to the diameter (d*) of the tank. Note 
that we need to take the negative value of the square root function 
for A in (2.5.14) in order to satisfy the physical requirement that 
the diameter d obtained from (2.5.12) as 

d = -4A (2.5.15) 

is a positive value. 

Now, we generalize the previous two methods. 

2.5.1 Direct Method 

N ow we generalize the preceding method of elimination using differen­
tial calculus. Consider the extrema of a function f(XI, X2) with two 
interdependent variables Xl and X2, subject to the condition 

(2.5.16) 

As a necessary condition for extrema, we have 

af af 
df = -a dXI + -a dX2 = o. 

Xl X2 
(2.5.17) 

However, since dXI and dX2 are not arbitrary, but related by the con­
dition 

ag ag 
dg = -a dXI + -a dX2 = 0, 

Xl X2 
(2.5.18) 
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it is not possible to conclude as in the case of extremization of functions 
without conditions that 

and (2.5.19) 

in the necessary condition (2.5.17). This is easily seen, since if the 
set of extrema conditions (2.5.19) is solved for optimal values xi and 
x2' there is no guarantee that these optimal values, would, in general 
satisfy the given condition (2.5.16). 

In order to find optimal values that satisfy both the condition (2.5.16) 
and that of the extrema conditions (2.5.17), we arbitrarily choose one 
of the variables, say Xl, as the independent variable. Then X2 becomes 
a dependent variable as per the condition (2.5.16). Now, assuming that 
8g/8x2 i- 0, (2.5.18) becomes 

{
8g/ 8XI} 

dX2 = - 8g/8x 2 dXI (2.5.20) 

and using (2.5.20) in the necessary condition (2.5.17), we have 

(2.5.21) 

As we have chosen dXI to be the independent, we now can consider it 
to be arbitrary, and conclude that in order to satisfy (2.5.21), we have 
the coefficient of dXI to be zero. That is 

(%:J (%:J -(%:J (%:J = o. (2.5.22) 

Now, the relation (2.5.22) and the condition (2.5.16) are solved simul­
taneously for the optimal solutions xi and x2' Equation (2.5.22) can 
be rewritten as 

=0. (2.5.23) 

This is also, as we know, the Jacobian of f and 9 w.r.t. Xl and X2. 
This method of elimination of the dependent variables is quite tedious 
for higher order problems. 
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2.5.2 Lagrange Multiplier Method 

We now generalize the second method of solving the same problem of 
extrema of functions with conditions. Consider again the extrema of 
the function f(Xl, X2) subject to the condition 

(2.5.24) 

In this method, we form an augmented Lagrangian function 

(2.5.25) 

where, A, a parameter (multiplier) yet to be determined, is the La­
grange multiplier. Let us note that using the given condition (2.5.24) 
in the Lagrangian (2.5.25), we have 

(2.5.26) 

and therefore a necessary condition for extrema is that 

df = d£ = O. (2.5.27) 

Accepting the idea that the Lagrangian (2.5.25) is a better represen­
tation of the entire problem than the equation (2.5.26) in finding the 
extrema, we have from the Lagrangian relation (2.5.25) 

d£ = df + Adg = O. (2.5.28) 

Using (2.5.17) and (2.5.18) in (2.5.28), and rearranging 

[ 
8 f 8g 1 [ 8 f 89 1 
8Xl + A 8Xl dXl + 8X2 + A 8X2 dX2 = O. (2.5.29) 

Now dXl and dX2 are both not independent and hence cannot immedi­
ately conclude that each of the coefficients of dXl and dX2 in (2.5.29) 
must be zero. Let us choose dXl to be independent differential and then 
dX2 becomes a dependent differential as per (2.5.18). Further, let us 
choose the multiplier A, which has been introduced by us and is at our 
disposal, to make one of the coefficients of dXl or dX2 in (2.5.29) zero. 
For example, let A take on the value A * that makes the coefficient of 
the dependent differential dX2 equal zero, that is 

(2.5.30) 
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With (2.5.30), the equation (2.5.29) reduces to 

(2.5.31) 

Since, dXl is the independent differential, it can be varied arbitrarily. 
Hence, for (2.5.31) to be satisfied for all dxl, the coefficient of dXl must 
be zero. That is 

oj +A* og =0. 
OXl OXl 

(2.5.32) 

Now from (2.5.25), note that 

(2.5.33) 

yields the constraint relation (2.5.16). Combining the results from 
(2.5.32), (2.5.30), and (2.5.33), we have 

o£ = oj + A* 8g = 0 
OXl OXl OXl 

(2.5.34) 

o£ = oj + A* og = 0 
OX2 OX2 8X2 

(2.5.35) 

o£ (* *) OA = 9 xl,x2 = o. (2.5.36) 

The preceding three equations are to be solved simultaneously to obtain 
xi, x2' and A*. By eliminating A* between (2.5.34) and (2.5.35) 

(::J (::J -(::J (::J = 0 (2.5.37) 

which is the same condition as (2.5.22) obtained by the direct method, 
thus indicating that we have the same result by Lagrange multiplier 
method. 

Let us note that the necessary conditions (2.5.34) and (2.5.35) are 
just the same equations which would have been obtained from consid­
ering the differentials dXl and dX2 as though they were independent 
in (2.5.29). Introduction of the multiplier A has allowed us to treat 
all the variables in the augmented function £(Xl' X2, A) as though each 
variable is independent. Thus, the multiplier A has acted like a catalyst, 
appearing in the intermediate stage only. 
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Summarizing, the extrema of a function f(xl, X2) subject to the con­
dition (or constraint) g(XI' X2) = 0 is equivalent to extrema of a single 
augmented function £(XI, X2, A) = f(xl, X2) + Ag(xl, X2) as though 
Xl, X2 and A are independent. We now generalize this result. 

THEOREM 2.2 
Consider the extrema of a continuous, real-valued function f(x) 
f(xl, X2, ... ,xn ) subject to the conditions 

gl(X) = gl(XI,X2,··· ,xn ) = 0 

g2(X) = g2(XI, X2, ... ,xn ) = 0 

(2.5.38) 

where, f and g have continuous partial derivatives, and m < n. Let 
AI, A2, ... ,Am be the Lagrange multipliers corresponding to m conditions, 
such that the augmented Lagrangian function is formed as 

£(x, A) = f(x) + A'g(X), (2.5.39) 

where, A' is the transpose of A. Then, the optimal values x* and A * are the 
solutions of the following n + m equations 

a £ = a f + A' ag = 0 
ax ax ax (2.5.40) 

a£ 
aA = g(x) = o. (2.5.41 ) 

Features of Lagrange Multiplier: The Lagrange multiplier method 
is a powerful one in finding the extrema of functions subject to condi­
tions. It has the following attractive features: 

1. The importance of the Lagrange multiplier technique lies on the 
fact that the problem of determining the extrema of the function 
f(x) subject to the conditions g(x) = 0 is embedded within the 
simple problem of determining the extrema of the simple aug­
mented function £(x, A) = f(x) + A'g(X). 

2. Introduction of Lagrange multiplier allows us to treat all the vari­
ables x and A in the augmented function £(x, A) as though each 
were independent. 
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3. The multiplier A acts like a catalyst in the sense that it is intro­
duced to perform a certain duty as given by item 2. 

4. The increased dimensionality (n + m) which is characteristic of 
the Lagrange multiplier method, is generally more than compen­
sated by the relative simplicity and systematic procedure of the 
technique. 

The multiplier method was given by Lagrange in 1788. 

2.6 Extrema of Functionals with Conditions 
In this section, we extend our ideas to functionals based on those de­
veloped in the last section for functions. First, we consider a functional 
with two variables, use the results of the previous section on the Co V, 
derive the necessary conditions and then extend the same for a general 
nth order vector case. Consider the extremization of the performance 
index in the form of a functional 

subject to the condition (plant or system equation) 

with fixed-end-point conditions 

XI(tO)=XlO; 

XI(tj) = Xlj; 

X2(tO) = X20 

X2(tj) = X2j' 

Now we address this problem under the following steps. 

• Step 1: Lagrangian 

• Step 2: Variations and Increment 

• Step 3: First Variation 

• Step 4: Fundamental Theorem 

• Step 5: Fundamental Lemma 

• Step 6: Euler-Lagrange Equation 

(2.6.2) 

(2.6.3) 
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• Step 1: Lagrangian: We form an augmented functional 

(2.6.4) 

where, A(t) is the Lagrange multiplier, and the Lagrangian £, is 
defined as 

£, = £'(Xl(t),X2(t),Xl(t),X2(t),A(t),t) 

= V(Xl(t), X2(t), Xl(t), X2(t), t) 

+A(t)g(Xl(t), X2(t), Xl(t), X2(t)) (2.6.5) 

Note from the performance index (2.6.1) and the augmented per­
formance index (2.6.4) that Ja = J if the condition (2.6.2) is 
satisfied for any A(t). 

• Step 2: Variations and Increment: Next, assume optimal values 
and then consider the variations and increment as 

Xi(t) = xi(t) + 8Xi(t), Xi(t) = xi(t) + 8Xi(t), i = 1,2 

~Ja = Ja(xi(t) + 8Xi(t), xi(t) + 8Xi(t), t) - Ja(xi(t), xi(t), t), 

(2.6.6) 

for i = 1,2. 

• Step 3: First Variation: Then using the Taylor series expansion 
and retaining linear terms only, the first variation of the func­
tional J a becomes 

(2.6.7) 

As before in the section on Co V, we rewrite the terms containing 
8Xl(t) and 8X2(t) in terms of those containing 8Xl(t) and 8X2(t) 
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only (using integration by parts, J udv = uv - J vdu). Thus 

Using the above, we have the first variation (2.6.7) as 

Since this is a fixed-final time and fixed-final state problem as 
given by (2.6.3), no variations are allowed at the final point. This 
means 

(2.6.10) 

Using the boundary variations (2.6.10) in the augmented first 
variation (2.6.9), we have 

Ma= 1:1 [(:~). -! (:~)J8Xl(t)dt 
+ {I [(:~). _ ! (:~) J 8X2(t)dt. (2.6.11) 

• Step 4: Fundamental Theorem: Now, we proceed as follows. 

1. We invoke the fundamental theorem of the calculus of vari­
ations (Theorem 2.1) and make the first variation (2.6.11) 
equal to zero. 
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2. Remembering that both 8Xl(t) and 8X2(t) are not indepen­
dent, because Xl(t) and X2(t) are related by the condition 
(2.6.2), we choose 8X2(t) as the independent variation and 
8Xl(t) as the dependent variation. 

3. Let us choose the multiplier A*(t) which is arbitrarily intro­
duced and is at our disposal, in such a way that the coef­
ficient of the dependent variation 8Xl(t) in (2.6.11) vanish. 
That is 

( 8C) _ ~ ( 8C) = 0 
8Xl * dt 8Xl * . 

(2.6.12) 

With these choices, the first variation (2.6.11) becomes 

f [(:~). -! (:~) J 8X2(t)dt = O. (2.6.13) 

• Step 5: Fundamental Lemma: Using the fundamental lemma of 
CoY (Lemma 2.1) and noting that since 8X2(t) has been chosen 
to be independent variation and hence arbitrary, the only way 
(2.6.13) can be satisfied, in general, is that the coefficient of 8Xl(t) 
also vanish. That is 

( 8C) _ ~ ( 8C) = 0 
8X2 * dt 8X2 * . 

(2.6.14) 

Also, from the Lagrangian(2.6.5) note that 

(8C) = 0 
8A * 

(2.6.15) 

yields the constraint relation (2.6.2) . 

• Step 6: Euler-Lagrange Equation: Combining the various rela­
tions (2.6.12), (2.6.14), and (2.6.15), the necessary conditions for 
extremization of the functional (2.6.1) subject to the condition 
(2.6.2) (according to Euler-Lagrange equation) are 

( 8C) _ ~ ( 8C) = 0 
8Xl * dt 8Xl * 

(2.6.16) 

( 8C) _ ~ ( 8C) = 0 
8X2 * dt 8X2 * 

(2.6.17) 

(8C) _ ~ (8C) = 0 
8A * dt 8.\ * . 

(2.6.18) 
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Let us note that these conditions are just the ones that would have 
been obtained from the Lagrangian (2.6.5), as if both 8Xl(t) and 
8X2(t) had been independent. Also, in (2.6.18), the Lagrangian £ 
is independent of ~(t) and hence the condition (2.6.18) is really 
the given plant equation (2.6.2). 

Thus, the introduction of the Lagrange multiplier A( t) has en­
abled us to treat the variables Xl(t) and X2(t) as though they 
were independent, in spite of the fact that they are related by the 
condition (2.6.2). The solution of the two, second-order differ­
ential equations (2.6.16) and (2.6.17) and the condition relation 
(2.6.2) or (2.6.18) along with the boundary conditions (2.6.3) give 
the optimal solutions xi(t), x2(t), and A*(t). 

Now, we generalize the preceding procedure for an nth order system. 
Consider the extremization of a functional 

it! 
J = V(x(t), x(t), t)dt 

to 
(2.6.19) 

where, x(t) is an nth order state vector, subject to the plant equation 
( condition) 

gi(X(t), x(t), t) = 0; i = 1,2, ... ,m (2.6.20) 

and boundary conditions, x(O) and x(tf). We form an augmented 
functional 

it! 
Ja = £(x(t), x(t), A(t), t)dt 

to 
(2.6.21) 

where, the Lagrangian £ is given by 

I£(x(t), x(t), A(t), t) = V(x(t), x(t), t) + A'(t)gi(X(t), x(t), t) I (2.6.22) 

and the Lagrange multiplier A(t) = [Al(t), A2(t), ... , Am(t)]'. We now 
apply the Euler-Lagrange equation on Ja to yield 

(8£) _ ~ (8£) = 0 
8x * dt 8x * ' 

(2.6.23) 

( 8£) d (8£) . ~ * - di 8I * = 0 ~ 9i(X(t), x(t), t) = o. (2.6.24) 
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Note that from (2.6.22), the Lagrangian £ is independent of ~(t) and 
hence the Euler-Lagrange equation (2.6.24) is nothing but the given 
relation regarding the plant or the system (2.6.20). Thus, we solve 
the Euler-Lagrange equation (2.6.23) along with the given boundary 
conditions. Let us now illustrate the preceding method by a simple 
example. 

Example 2.11 

Minimize the performance index 

(2.6.25) 

with boundary conditions 

x(O) = 1; x(l) = 0 (2.6.26) 

subject to the condition (plant equation) 

x(t) = -x(t) + u(t). (2.6.27) 

Solution: Let us solve this problem by the two methods, i.e., the 
direct method and the Lagrange multiplier method. 

1 Direct Method: Here, we eliminate u(t) between the perfor­
mance index (2.6.25) and the plant (2.6.27) to get the functional 
as 

J = t [x2(t) + (x(t) + x(t))2]dt 

= t [2x2(t) + x2(t) + 2x(t)x(t)]dt. (2.6.28) 

Now, we notice that the functional (2.6.28) absorbed the condition 
(2.6.27) within itself, and we need to consider it as a straight for­
ward extremization of a functional as given earlier. Thus, applying 
the Euler-Lagrange equation 

(OV) _ ~ (OV) = 0 
ax * dt ax * 

(2.6.29) 

to the functional (2.6.28), where, 

(2.6.30) 
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we get 

4x*(t) + 2x*(t) - :t (2x*(t) + 2x*(t)) = O. (2.6.31) 

Simplifying the above 

x*(t) - 2x*(t) = 0 (2.6.32) 

the solution (see later for use of MATLAB©) of which gives the 
optimal as 

(2.6.33) 

where, the constants C1 and C2, evaluated using the given bound­
ary conditions (2.6.26), are found to be 

(2.6.34) 

Finally, knowing the optimal x* ( t ), the optimal control u * ( t ) is 
found from the plant (2.6.27) to be 

u*(t) = x*(t) + x*(t) 

= C1 (1 - V2)e-V2t + C2 (1 + V2)eV2t . (2.6.35) 

Although the method appears to be simple, let us note that it is 
not always possible to eliminate u(t) from (2.6.25) and (2.6.27) 
especially for higher-order systems. 

2 Lagrange Multiplier Method: Here, we use the ideas devel­
oped in the previous section on the extremization of functions with 
conditions. Consider the optimization of the functional (2.6.25) 
with the boundary conditions (2.6.26) under the condition describ­
ing the plant (2.6.27). First we rewrite the condition (2.6.27) as 

g(x(t), x(t), u(t)) = x(t) + x(t) - u(t) = o. (2.6.36) 

Now, we form an augmented functional as 

J = l [x2(t) + u2(t) + A(t){X(t) + x(t) - u(t)} 1 dt 

= l C(x(t), x(t), u(t), A(t))dt (2.6.37) 

where, A(t) is the Lagrange multiplier, and 

C(x(t), x(t), u(t), A(t)) = x2(t) + u2(t) 
+A(t) {x(t) + x(t) - u(t)} (2.6.38) 
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is the Lagrangian. Now, we apply the Euler-Lagrange equation to 
the previous Lagrangian to get 

(~~) * - :t (~~) * = 0 -----> 2x*(t) + ). *(t) - ~ *(t) = 0 (2.6.39) 

(~~) * - :t (~) * = 0 -----> 2u*(t) - ).*(t) = 0 (2.6.40) 

(~~) * - :t (!f) * = 0 -----> x*(t) + x*(t) - u*(t) = 0 (2.6.41) 

and solve for optimal x*(t), u*(t), and A*(t). We get first from 
(2.6.40) and (2.6.41) 

A*(t) = 2u*(t) = 2(x*(t) + x*(t)). (2.6.42) 

Using the equation (2.6.42) in (2.6.39) 

2x*(t) + 2(x*(t) + x*(t)) - 2(x*(t) + x*(t)) = O. (2.6.43) 

Solving the previous equation, we get 

x*(t) - 2x*(t) = 0 -----+ x*(t) = C1e-v'2t + C2ev'2t. (2.6.44) 

Once we know x*(t), we get A*(t) and hence u*(t) from (2.6.42) as 

u* (t) = i;* (t) + x* (t) 

= C1(1 - V2)e-v'2t + C2(1 + V2)ev'2t. (2.6.45) 

Thus, we get the same results as in direct method. The constants 
C1 and C2, evaluated using the boundary conditions (2.6.26) are 
the same as given in (2.6.34). 

The solution for the set of differential equations {2.6.32} with 
the boundary conditions (g. 6. 26) for Example 2.11 using Symbolic 
Toolbox of the MATLAIi9, Version 6, is shown below. 
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******************************************************** 
x=dsolve('D2x-2*x=O','x(O)=1,x(1)=O') 

x = 

-(exp(2A(1/2))A2+1)/(exp(2 A(1/2))A2-1)*sinh(2 A(1/2)*t)+ 
cosh(2A(1/2)*t) 

1/2 2 
(exp(2 ) 

1/2 
+ 1) sinh(2 t) 1/2 

- ----------------------------- + cosh(2 t) 

u = 

1/2 2 
exp(2 ) - 1 

-(exp(2A(1/2))A2+1)/(exp(2A(1/2))A2-1)*cosh(2A(1/2)*t)*2A(1/2)+ 
sinh(2A(1/2)*t)*2A(1/2)-(exp(2A(1/2))A2+1)/(exp(2A(1/2))A2_ 
1)*sinh(2A(1/2)*t)+cosh(2A(1/2)*t) 

1/2 2 
(exp(2 ) 

1/2 1/2 
+ 1) cosh(2 t) 2 

1/2 2 
exp(2 ) - 1 

1/2 

1/2 1/2 
+ sinh(2 t) 2 

1/2 2 
(exp(2 ) + 1) sinh(2 t) 1/2 

- ----------------------------- + cosh(2 t) 

1/2 2 
exp(2 ) - 1 

********************************************************* 

It is easy to see that the previous solution for optimal x*(t) is the 
same as given in (2.6.33) and (2.6.34). 

Let us note once again that the Lagrange multiplier ..\(t) helped us to 
treat the augmented functional (2.6.38) as if it contained independent 
variables x(t) and u(t), although they are dependent as per the plant 
equation (2.6.36). 
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2.7 Variational Approach to Optimal Control 
Systems 

In this section, we approach the optimal control system by variational 
techniques, and in the process introduce the Hamiltonian function, 
which was used by Pontryagin and his associates to develop the fa­
mous Minimum Principle [109]. 

2.7.1 Terminal Cost Problem 

Here we consider the optimal control system where the performance 
index is of general form containing a final (terminal) cost function in 
addition to the integral cost function. Such an optimal control problem 
is called the Bolza problem. Consider the plant as 

x(t) = f(x(t), u(t), t), (2.7.1) 

the performance index as 

itf 
J(u(t)) = S(x(tf), tf) + V(x(t), u(t), t)dt 

to 
(2.7.2) 

and given boundary conditions as 

x(to) = xo; x( t f) is free and t f is free (2.7.3) 

where, x(t) and u(t) are n- and r- dimensional state and control vectors 
respectively. This problem of Bolza is the one with the most general 
form of the performance index. 

The Lagrange problem was first discussed in 1762, Mayer 
considered his problem in 1878, and the problem of Bolza 
was formulated in 1913. 

Before we begin illustrating the Pontryagin procedure for this problem, 
let us note that 

rtf dS(:(t) , t) dt = S(x(t), t)I~~ = S(x(tf), tf) - S(x(to), to). (2.7.4) 
lto t 

Using the equation (2.7.4) in the original performance index (2.7.2), we 
get 

J2(U(t» = 1:' [V(x(t), u(t), t) + ~~] dt 

= rf 
V(x(t), u(t), t)dt + S(x(tf), tf) - S(x(to), to). (2.7.5) 

lto 



58 Chapter 2: Calculus of Variations and Optimal Control 

Since S(x(to), to) is a fixed quantity, the optimization of the original 
performance index J in (2.7.2) is equivalent to that of the performance 
index J2 in (2.7.5). However, the optimal cost given by (2.7.2) is dif­
ferent from the optimal cost (2.7.5). Here, we are interested in finding 
the optimal control only. Once the optimal control is determined, the 
optimal cost is found using the original performance index J in (2.7.2) 
and not J2 in (2.7.5). Also note that 

d[S(x(t), t)] = (as)' . () as 
dt ax x t + at' (2.7.6) 

We now illustrate the procedure in the following steps. Also, we first 
introduce the Lagrangian and then, a little later, introduce the Hamil­
tonian. Let us first list the various steps and then describe the same in 
detail. 

• Step 1: Assumption of Optimal Conditions 

• Step 2: Variations of Control and State Vectors 

• Step 3: Lagrange Multiplier 

• Step 4: Lagrangian 

• Step 5: First Variation 

• Step 6: Condition for Extrema 

• Step 7 : Hamiltonian 

• Step 1: Assumptions of Optimal Conditions: We assume opti­
mum values x*(t) and u*(t) for state and control, respectively. 
Then 

J(u*(t)) = 1:1 
[V(x*(t), u*(t), t) + dS(x;?), t)] dt 

ic*(t) = f(x*(t), u*(t), t). (2.7.7) 

• Step 2: Variations of Controls and States: We consider the 
variations (perturbations) in control and state vectors as (see 
Figure 2.7) 

x(t) = x*(t) + 8x(t); u(t) = u*(t) + 8u(t). (2.7.8) 
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x(t) 

x*(t)+ ox(t) 

~ __ .......... : ...... : ... ~ ...... T .. 

t 

Figure 2.7 Free-Final Time and Free-Final State System 

Then, the state equation (2.7.1) and the performance index (2.7.5) ': 
become 

x*(t) + 6x(t) = f(x*(t) + 6x(t), u*(t) + 6u(t), t) 

[tf+
6t

f [ dS] J(u(t)) = ito V(x*(t) + 6x(t), u*(t) + 6u(t), t) + dt dt 

(2.7.9) 

• Step 3: Lagrange Multiplier: Introducing the Lagrange multi­
plier vector .x(t) (also called costate vector) and using (2.7.6), 
we introduce the augmented performance index at the optimal 
condition as 

[4 (8S)' (8S) Ja(u*(t)) = lto [V(x*(t), u*(t), t) + 8x * x*(t) + 8t * 

+.x'(t) {f(x*(t), u*(t), t) - x*(t)}]dt (2.7.10) 
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and at any other (perturbed) condition as 

l
tf+8tf 

Ja(u(t)) = [V(x*(t) + 8x(t), u*(t) + 8u(t), t) 
to 

(8S)' (8S) + ax * [x*(t) + 8x(t)] + at * 

+A'(t) [f(x*(t) + 8x(t), u*(t) + 8u(t), t) 

- {x*(t) + 8x(t)}]]dt. (2.7.11) 

• Step 4: Lagrangian: Let us define the Lagrangian function at 
optimal condition as 

£ = £(x*(t), x*(t), u*(t), A(t), t) 

= V(x*(t), u*(t),t) + (~:)~ x*(t) + c;: 
+A'(t) {f(x*(t), u*(t), t) - x*(t)} (2.7.12) 

and at any other condition as 

£8 = £8(x*(t) +8x(t),x*(t) +8x(t),u*(t) +8U(t),A(t),t) 

= V(x*(t) + 8x(t), u*(t) + 8u(t), t) 

+ (:) ~ [x*(t) + 8x(t)] + (c;:) * 
+A'(t) [f(x*(t) + 8x(t), u*(t) + 8u(t), t) 

- {x*(t) + 8x(t)}] . (2.7.13) 

With these, the augmented performance index at the optimal and 
any other condition becomes 
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Using mean-value theorem and Taylor series, and retaining the 
linear terms only, we have 

(2.7.15) 

• Step 5: First Variation: Defining increment fl.J, using Taylor 
series expansion, extracting the first variation 8 J by retaining 
only the first order terms, we get the first variation as 

~J = Ja(u(t)) - Ja(u*(t)) 

it' 
= (£6 - £)dt + £It 8tf 

to I 

{t I { (a £ ) I (a £) I (a £ ) I } 
8J = ito ax * 8x(t) + ax * 8x(t) + au * 8u(t) dt 

+ £It, 8tf. (2.7.16) 

Considering the 8x(t) term in the first variation (2.7.16) and in­
tegrating by parts (using J udv = uv - J vdu), 

f (~): 6x(t)dt = {' (~;): :t (6x(t» dt 

= [(~»X(t)JC 
- {' [:t (~) J 6x(t)dt. (2.7.17) 
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Also note that since x(to) is specified, 8x(to) = O. Thus, using 
(2.7.17) the first variation 8J in (2.7.16) becomes 

oj = 1:' [(~). -:t (~) J ox(t)dt 

+ f (~)~ ou(t)dt 

+ Cit! ot, + [(~»X(t)] L (2.7.18) 

• Step 6: Condition for Extrema: For extrema of the functional J, 
the first variation 8 J should vanish according to the fundamental 
theorem (Theorem 2.1) of the CoV. Also, in a typical control 
system such as (2.7.1), we note that 8u(t) is the independent 
control variation and 8x(t) is the dependent state variation. First, 
we choose A(t) = A*(t) which is at our disposal and hence £* such 
that the coefficient of the dependent variation 8x(t) in (2.7.18) be 
zero. Then, we have the Euler-Lagrange equation 

(8£) _!i (8£) = 0 
8x * dt 8x * 

(2.7.19) 

where the partials are evaluated at the optimal (*) condition. 
Next, since the independent control variation 8u(t) is arbitrary, 
the coefficient of the control variation 8u(t) in (2.7.18) should be 
set to zero. That is 

(8£) = O. 
8u * 

(2.7.20) 

Finally, the first variation (2.7.18) reduces to 

(2.7.21) 

Let us note that the condition (or plant) equation (2.7.1) can be 
written in terms of the Lagrangian (2.7.12) as 

(8£) = O. 
8A * 

(2.7.22) 
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Figure 2.8 Final-Point Condition with a Moving Boundary B(t) 

In order to convert the expression containing 8x(t) in (2.7.21) 
into an expression containing 8xf (see Figure 2.8), we note that 
the slope of x*(t) + 8x(t) at tf is aI?proximated as 

(2.7.23) 

which is rewritten as 

8Xf = 8x(tf) + {x*(t) + 8x(t)} 8tf (2.7.24) 

and retaining only the linear (in 8) terms in the relation (2.7.24), 
we have 

(2.7.25) 

Using (2.7.25) in the boundary condition (2.7.21), we have the 
general boundary condition in terms of the Lagrangian as 

(2.7.26) 

• Step 7: Hamiltonian: We define the Hamiltonian 1l* (also called 
the Pontryagin 1l function) at the optimal condition as 

11l* = V(x*(t), u*(t), t) + A*' (t)f(x*(t), u*(t), t), I (2.7.27) 
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where, 

'H* = 'H* (x* (t), u* (t), A * (t), t). 

Then from (2.7.12) the Lagrangian £* in terms of the Hamiltonian 
'H* becomes 

£* = £*(x*(t), x*(t), u*(t), A*(t), t) 

= 'H*(x*(t), u*(t), A*(t), t) 

+ (~:) ~ x*(t) + (~~) * - >.*' (t)x*(t). (2.7.28) 

Using (2.7.28) in (2.7.20), (2.7.19), and (2.7.22) and noting that 
the terminal cost function S = S (x( t), t), we have the control, 
state and costate equations, respectively expressed in terms of 
the Hamiltonian. Thus, for the optimal control u*(t), the relation 
(2.7.20) becomes 

(2.7.29) 

for the optimal state x* ( t), the relation (2.7.19) becomes 

(8£) _ ~ (8£*) = 0 ~ 8x* dt 8x* 
(81t) (828)' (828) d {(88)' } - + - x*(t)+ - -- - -A*(t) =O~ 8x * &2 8x8t dt 8x * 

* * 

(81t) (828)' ( 828) [(828)' ( 828) . * 1 8x * + 8x2 * x*(t) + 8x8t * - 8x2 * x*(t) + 8x8t * - A (t) = 0 
leading to 

( 8'H) = -'\*(t) 
ax * 

(2.7.30) 

and for the costate A * ( t), 

(8£) = 0 -----+ (8'H) = X*(t). 
8A * 8A * 

(2.7.31) 

Looking at the similar structure of the relation (2.7.30) for the 
optimal costate A*(t) and (2.7.31) for the optimal state x*(t) it 
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is clear why .x(t) is called the costate vector. Finally, using the 
relation (2.7.28), the boundary condition (2.7.26) at the optimal 
condition reduces to 

(2.7.32) 

This is the general boundary condition for free-end point system 
in terms of the Hamiltonian. 

2. 7.2 Different Types of Systems 

We now obtain different cases depending on the statement of the prob­
lem regarding the final time tf and the final state x(tf) (see Figure 2.9). 

• Type (a): Fixed-Final Time and Fixed-Final State System: Here, 
since tf and x(tf) are fixed or specified (Figure 2.9(a», both 8tf 
and 8xf are zero in the general boundary condition (2.7.32), and 
there is no extra boundary condition to be used other than those 
given in the problem formulation. 

• Type (b): Free-Final Time and Fix ed-Final State System: Since 
tf is free or not specified in advance, 8tf is arbitrary, and since 
X(tf) is fixed or specified, 8xf is zero as shown in Figure 2.9(b). 
Then, the coefficient of the arbitrary 8t f in the general boundary 
condition (2.7.32) is zero resulting in 

(2.7.33) 

• Type (c): Fixed-Final Time and Free-Final State System: Here 
tf is specified and x(tf) is free (see Figure 2.9(c». Then 8tf is 
zero and 8x f is arbitrary, which in turn means that the coefficient 
of oXf in the general boundary condition (2.7.32) is zero. That 
is 

( as _ -x*(t») = 0 ----+ -X*(tf) = (as) 
ax *tfax *tf 

(2.7.34) 
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Figure 2.9 Different Types of Systems: (a) Fixed-Final Time and 
Fixed-Final State System, (b) Free-Final Time and Fixed-Final State 

System, (c) Fixed-Final Time and Free-Final State System, (d) 
Free-Final Time and Free-Final State System 
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• Type (d): Free-Final Time and Dependent Free-Final State Sys­
tem: If t f and x( t f) are related such that x( t f) lies on a moving 
curve 8(t) as shown in Figure 2.8, then 

(2.7.35) 

Using (2.7.35), the boundary condition (2.7.32) for the optimal 
condition becomes 

Since t f is free, 8t f is arbitrary and hence the coefficient of 8t f 
in (2.7.36) is zero. That is 

• Type (e): Free-Final Time and Independent Free-Final State: 
If t f and x( t f) are not related, then 8t f and 8x f are unrelated, 
and the boundary condition (2.7.32) at the optimal condition 
becomes 

(2.7.38) 

(2.7.39) 

2.7.3 Sufficient Condition 

In order to determine the nature of optimization, i.e., whether it is 
minimum or maximum, we need to consider the second variation and 
examine its sign. In other words, we have to find a sufficient condition 
for extremum. Using (2.7.14), (2.7.28) and (2.7.37), we have the second 



68 Chapter 2: Calculus of Variations and Optimal Control 

variation in (2.7.16) and using the relation (2.7.28), we get 

For the minimum, the second variation 82 J must be positive. This 
means that the matrix II in (2.7.40) 

(2.7.41) 

must be positive definite. But the important condition is that the 
second partial derivative of 1t* w.r.t. u(t) must be positive. That is 

(2.7.42) 

and for the maximum, the sign of (2.7.42) is reversed. 

2. 7.4 Summary of Pontryagin Procedure 

Consider a free-final time and free-final state problem with general cost 
function (Bolza problem), where we want to minimize the performance 
index 

i t! 
J = S(x(tf), tf) + V(x(t), u(t), t)dt 

to 
(2.7.43) 

for the plant described by 

x(t) = f(x(t), u(t), t) (2.7.44) 

with the boundary conditions as 

x(t = to) = Xo; t = tf is free and x(tf) is free. (2.7.45) 
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Table 2.1 Procedure Summary of Pontryagin Principle for Bolza 
Problem 

A. Statement of the Problem 
Given the plant as 
x(t) = f(x(t), u(t), t), 
the performance index as 

J = S(x(tf), tf) + Jt~ V(x(t), u(t), t)dt, 
and the boundary conditions as 
x(to) = Xo and tf and x(tf) = xf are free, 
find the optimal control. 

B. Solution of the Problem 
Step 1 Form the Pontryagin 1i function 

1i(x(t), u(t), A(t), t) = V(x(t), u(t), t) + A' (t)f(x(t), u(t), t). 
Step 2 Minimize 1i w.r.t. u(t) 

(~~t = 0 and obtain u*(t) = h(x*(t), A*(t), t). 

Step 3 U sing the results of Step 2 in Step 1, find the optimal 1i* 
1i*(x*(t), h(x*(t), A*(t), t), A*(t), t) = 1i*(x*(t), A*(t), t). 

Step 4 Solve the set of 2n differential equations 

x* (t) = + (~~) * and'\ * (t) = - (~":.) * 
with initial conditions Xo and the final conditions 

[1i* + ~~]tf 8tf + [(~~t - A*(t)]:f 8xf = O. 
Step 5 Substitute the solutions of x* (t), A" (t) from Step 4 

into the expression for the optimal control u*(t) of Step 2. 
C. Types of Systems 

a . Fixed-final time and fixed-final state system, Fig. 2.9(a) 
b). Free-final time and fixed-final state system, Fig. 2.9(b) 
c . Fixed-final time and free-final state system, Fig. 2.9(c) 
d). Free-final time and dependent free-final state system, Fig. 2.9(d). 
e . Free-final time and independent free-final state system 
Type Substitutions Boundary Conditions 

(a) 8tf = 0,8xf = 0 x(to) = xo, x(tf) = xf 

(b) 8tf =1= 0, 8xf = 0 x( to) = Xo, x( t f) = x f' l1i* + Ft J t f = 0 

(c) 8tf = 0, 8xf =1= 0 x( to) = xo, A * (t f) = (~tt f 

(d) 8xf = 6(tf )8tf x(to) = Xo, x(tf) = 6(tf) 

[H* + ~~ + { ( ~~) * - A * (t)} I 6( t) L f = 0 

(e) 8tf =1= 0 8x(to) = Xo 

8xf =1= 0 [1i*+as] =0 [(as) -A*(t)] =0 at tf 'ax * tf 

69 
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Here, x(t) and u(t) are n- and r- dimensional state and control vec­
tors respectively. Let us note that u( t) is unconstrained. The entire pro­
cedure (called Pontryagin Principle) is now summarized in Table 2.1. 

Note: From Table 2.1 we note that the only difference in the proce­
dure between the free-final point system without the final cost function 
(Lagrange problem) and free-final point system with final cost function 
(Bolza problem) is in the application of the general boundary condition. 

To illustrate the Pontryagin method described previously, consider 
the following simple examples describing a second order system. Specif­
ically, we selected a double integral plant whose analytical solutions for 
the optimal condition can be obtained and the same verified by using 
MATLAB©. 

First we consider the fixed-final time and fixed-final state problem 
(Figure 2.9(a), Table 2.1, Type (a)). 

Example 2.12 

Given a second order (double integrator) system as 

Xl(t) = X2(t) 
X2(t) = u(t) 

and the performance index as 

(2.7.46) 

(2.7.47) 

find the optimal control and optimal state, given the boundary 
(initial and final) conditions as 

x(O) = [1 2]'; x(2) = [1 0]'. (2.7.48) 

Assume that the control and state are unconstrained. 

Solution: We follow the step-by-step procedure given in Table 2.1. 
First, by comparing the present plant (2.7.46) and the PI (2.7.47) 
with the general formulation of the plant (2.7.1) and the PI (2.7.2), 
we identify 

1 
V(x(t), u(t), t) = V(u(t)) = "2u2(t) 

f(x(t), u(t), t) = [fl, f2]', 

where, fl = X2(t), f2 = u(t). 

(2.7.49) 
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• Step 1: Form the Hamiltonian function as 

H = H(XI(t), X2(t), u(t), AI(t), A2(t)) 
= V(u(t)) + -X'(t)f(x(t) , u(t)) 

1 
= 2u2(t) + Al (t)X2(t) + A2(t)U(t). 
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(2.7.50) 

• Step 2: Find u*(t) from 

aH 
au = 0 ~ u*(t) + A2(t) = 0 ~ u*(t) = -A2(t). (2.7.51) 

• Step 3: Using the results of Step 2 in Step 1, find the optimal 
H*as 

H* (xi(t) , X2(t), Ai(t) , A2(t)) = ~A22 (t) + Ai (t)X2(t) - A22 (t) 

= Ai(t)x2(t) - ~A22(t). (2.7.52) 

• Step 4: Obtain the state and costate equations from 

xi(t) = + (:) * = x2(t) 

x:;(t) = + (:) * = -A;(t) 

. (aH) Ai(t) = - aXI * = 0 

A;(t) = - (:) * = -Ai(t). (2.7.53) 

Solving the previous equations, we have the optimal state and 
costate as 

* C3 3 C4 2 Xl (t) = tit - 2t + C2t + C1 

X2(t) = ~3t2 - C4t + C2 

Ai(t) = C3 
A2(t) = -C3t + C4. (2.7.54) 

• Step 5: Obtain the optimal control from 

u*(t) = -A2(t) = C3t - C4 (2.7.55) 
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Optimal u*(t) J x2*(t) J x1*(Q 
Controller 

Figure 2.10 Optimal Controller for Example 2.12 

where, 01, O2 , 0 3 , and 0 4 are constants evaluated using the given 
boundary conditions (2.7.48). These are found to be 

01 = 1, O2 = 2, 03 = 3, and 04 = 4. (2.7.56) 

Finally, we have the optimal states, costates and control as 

xi(t) = 0.5t3 - 2t2 + 2t + 1, 

X2(t) = 1.5t2 
- 4t + 2, 

Ai(t) = 3, 
A2(t) = -3t + 4, 
u*(t) = 3t - 4. (2.7.57) 

The system with the optimal controller is shown in Figure 2.10. 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions C2.7.48} for Example 2.12 using Symbolic 
Toolbox of the MATLA~, Version 6, is shown below. 

************************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% MATLAB Version 6.0 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=0,Dlambda2=-lambdal, ... 
xl(0)=1,x2(0)=2,xl(2)=1,x2(2)=0') 
S.xl 
S.x2 
S.lambdal 
S.lambda2 

S = 

S.xl 

lambdal: [lxl symJ 
lambda2: [lxl symJ 

xl: [lxl symJ 
x2: [lxl symJ 

ans= 
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S.x2 

ans= 
2-4*t+3/2*t-2 

S.lambdal 

ans= 
3 
S.lambda2 

ans= 

Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O: .02: 2 
t=sym(tp); 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k:') 
xlabel ('t') 
gtext('x_l(t) ') 
gtext (' x_2(t) ') 
gtext ('u(t) ') 
********************************************************* 
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It is easy to see that the previous solutions for xi(t) , x1(t) , Ai(t) , 
A2(t), and u*(t) = -A2(t) obtained by using MATLAB© are the 
same as those given by the analytical solutions (2.7.571 The op­
timal control and state are plotted (using MATLAB©) in Fig­
ure 2.11. 

Next, we consider the fixed-final time and free-final state case (Fig-
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Figure 2.11 Optimal Control and States for Example 2.12 

ure 2.9(b), Table 2.1, Type (c)) of the same system. 

Example 2.13 

Consider the same Example 2.12 with changed boundary conditions 
as 

x(O) = [1 2]'; xl(2) = 0; x2(2) is free. (2.7.58) 

Find the optimal control and optimal states. 

Solution: Following the procedure illustrated in Table 2.1 (Type 
( c) ), we get the same optimal states, costates, and control as given 
in (2.7.54) and (2.7.55) which are repeated here for convenience. 

* 0 3 3 04 2 X1(t) = (ft - 2:t +02t + Cl, 

X2(t) = ~3t2 - 04t + C2, 

Ai(t) = 0 3 , 

A2(t) = -03t + 0 4, 
u*(t) = -A2(t) = C3t - 0 4. (2.7.59) 

The only difference is in solving for the constants C1 to C4. First 
of all, note that the performance index (2.7.47) does not contain 
the terminal cost function S. From the given boundary conditions 
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(2.7.58), we have tf specified to be 2 and hence 8tf is zero in the 
general boundary condition (2.7.32). 

Also, since x2(2) is free, 8X2j is arbitrary and hence the corre-
sponding final condition on the costate becomes 

(2.7.60) 

(since S = 0). Thus we have the four boundary conditions as 

With these boundary conditions substituted in (2.7.59), the con­
stants are found to be 

01 = 1; 02 = 2; 03 = 15/8; 04 = 15/4. (2.7.62) 

Finally the optimal states, costates and control are given from 
(2.7.59) and (2.7.62) as 

* 5 3 15 2 
xl (t) = 16 t - 8 t + 2t + 1, 

* 15 2 15 
x2 (t) = -t - -t + 2 

16 4 ' 

*( ) 15 
Al t = 8' 
* 15 15 

A2(t) = -8t + 4' 
* 15 15 

u (t) = 8 t - 4· 
(2.7.63) 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions {2. 7. 58} for Example 2.13 using Symbolic 
Toolbox of the MATLAdS) , Version 6, is shown below. 

*************************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% MATLAB Version 6.0 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=0,Dlambda2=-lambdal, 
xl(0)=1,x2(0)=2,xl(2)=0,lambda2(2)=0') 

S = 
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lambdal: [lxl sym] 
lambda2: [lxl sym] 

xl: [lxl sym] 
x2: [lxl sym] 

S.xl 

ans= 

S.x2 

ans= 

S.lambdal 

ans= 

15/8 

S.lambda2 

ans= 

-15/8*t+15/4 

%% Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O:.02:2 
t=sym(tp); 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k: ') 
xlabel ( , t ' ) 
gtext ('x_l (t) ') 
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gtext ('x_2(t)') 

gtext ('u(t) ') 

******************************************************* 

It is easy to see that the previous solutions for xi (tj, x2 (t), Ai (t), A2 (t), 
and u*(t) = -A2(t) obtained by using MATLAB© are the same as 
those given by (2.7.63) obtained analytically. The optimal control 
and states for Example 2.13 are plotted in Figure 2.12. 
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Figure 2.12 Optimal Control and States for Example 2.13 

Next, we consider the free-final time and independent free-final state 
case (Figure 2.9(e), Table 2.1, Type (e)) of the same system. 

Example 2.14 

Consider the same Example 2.12 with changed boundary conditions 
as 

Find the optimal control and optimal state. 

Solution: Following the procedure illustrated in Table 2.1 (Type 
(e)), we get the same optimal control, states and costates as given 
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in (2.7.54) and (2.7.55) which are repeated here for convenience. 

* C3 3 C4 2 
X1(t) = 6 t - 2t + C2t + C1, 

X2(t) = ~3t2 - C4t + C2, 

Ai(t) = C3, 
A2(t) = -C3t + C4, 
U*(t) = -A2(t) = C3t - C4. (2.7.65) 

The only difference is in solving for the constants C1 to C4 and the 
unknown t f. First of all, note that the performance index (2.7.47) 
does not contain the terminal cost function S, that is, S = O. From 
the given boundary conditions (2.7.64), we have tf unspecified and 
hence otf is free in the general boundary condition (2.7.32) leading 
to the specific final condition 

(2.7.66) 

Also, since X2 (t f) is free, OX2 f is arbitrary and hence the general 
boundary condition (2.7.32) becomes 

>'2(tf) = (:!) = 0 (2.7.67) 

where ~ is given by (2.7.52). Combining (2.7.64), (2.7.66) and 
(2.7.67), we have the following 5 boundary conditions for the 5 
unknowns (4 constants of integration C1 to C4 and 1 unknown t f) 
as 

x1(0)=I; X2(0) =2; X1(tf) =3; 

A2(tf) = 0; A1(tf)X2(tf) - 0.5A~(tf) = o. (2.7.68) 

Using these boundary conditions along with (2.7.65), the constants 
are found to be 

C1 = 1; C2 = 2; C3 = 4/9; C4 = 4/3; tf = 3. (2.7.69) 

Finally, the optimal states, costates, and control are given from 
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(2.7.65) and (2.7.69) as 

(2.7.70) 

The solution for the set of differential equations (2.7.53) with 
the boundary conditions C2. 7.68} for Example 2.14 using Symbolic 
Toolbox of the MATLA~, Version 6 is shown below. 

******************************************************** 
%% Solution Using Symbolic Toolbox (STB) in 
%% of MATLAB Version 6 
%% 
clear all 
S=dsolve('Dx1=x2,Dx2=-lam2,Dlaml=O,Dlam2=-lam1,xl(0)=l, 

x2(0)=2,x1(tf)=3,lam2(tf)=0') 
t='tf' ; 
eq1=subs(S.x1)-'x1tf'; 
eq2=subs(S.x2)-'x2tf'; 
eq3=S.lam1-'lam1tf'; 
eq4=subs(S.lam2)-'lam2tf'; 
eq5='lamltf*x2tf-0.5*lam2tf A 2'; 
S2=solve(eq1,eq2,eq3,eq4,eq5,'tf,x1tf,x2tf,lam1tf, 

lam2tf','lam1tf<>0') 
%% lam1tf<>0 means lam1tf is not equal to 0; 
%% This is a condition derived from eq5. 
%% Otherwise, without this condition in the above 
%% SOLVE routine, we get two values for tf (1 and 3 in this case) 
%% 
tf=S2.tf 
xltf=S2.xltf; 
x2tf=S2.x2tf; 
clear t 
x1=subs(S.xl) 
x2=subs(S.x2) 
lam1=subs(S.lam1) 
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lam2=subs(S.lam2) 
%% Convert the symbolic values to 
%% numerical values as shown below. 
j=l; 
tf=double(subs(S2.tf)) 
%% coverts tf from symbolic to numerical 
for tp=O:O.05:tf 
t=sym(tp); 
%% coverts tp from numerical to symbolic 
xlp(j)=double(subs(S.xl)); 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2)); 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lam2)); 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l ; 
end 
plot(tl,xlp, 'k' ,tl,x2p, 'k' ,tl,up, 'k:') 
xlabel('t' ) 
gtext (' x_l (t) ') 
gtext ( , x_2 ( t) , ) 
gtext ('u(t) ') 

******************************************************* 

The optimal control and states for Example 2.14 are plotted in 
Figure 2.13. 

Finally, we consider the fixed-final time and free-final state system 
with a terminal cost (Figure 2.9 (b), Table 2.1, Type (b)). 

Example 2.15 

We consider the same Example 2.12 with changed performance 
index 

1 2 1 2 1102 
2 J = -[xl(2) - 4] + -[x2(2) - 2] + -2 u dt 

220 
(2.7.71) 

and boundary conditions as 

x(O) = [1 2]; x(2) = is free. (2.7.72) 

Following the procedure illustrated in Table 2.1 (Type (b)), we get 
the same optimal control, states and costates as given in (2.7.54) 
and (2.7.55), which are reproduced here for ready reference. Thus 
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Figure 2.13 Optimal Control and States for Example 2.14 

we have 

* C3 3 C4 2 X1(t) = (it - 2t + C2t + C1, 

X2(t) = ~3t2 - C4t + C2, 

Ai(t) = C3, 
A2(t) = -C3t + C4, 
U*(t) = -A2(t) = C3t - C4. (2.7.73) 

The only difference is in solving for the constants C1 to C4 using the 
given and obtained boundary conditions. Since t f is specified as 2, 
6t f is zero and since x(2) unspecified, 6xf is free in the boundary 
condition (2.7.32), which now reduces to 

(2.7.74) 

where, 

(2.7.75) 
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Thus, (2.7.74) becomes 

AHtf) = (a as ) ~ AH2) = xl(2) - 4 
Xl tf 

A2(tf) = (a as ) ~ A2(2) = x2(2) - 2. 
X2 tf 

(2.7.76) 

Now, we have two initial conditions from (2.7.72) and two final 
conditions from (2.7.76) to solve for the four constants as 

(2.7.77) 

Finally, we have the optimal states, costates and control given as 

* 1 3 2 2 
Xl (t) = 14 t -"7 t + 2t + 1, 

*( ) 3 2 4 x2 t = -t - -t + 2 
14 7 ' 

Ai(t) = ~, 

A2(t) = -~t + ~, 
u*(t) = ~t - i. 

7 7 
(2.7.78) 

The previous results c~ also obtained using Symbolic Math 
Toolbox of the MATLAB\9, Version 6, as shown below. 

*************************************************************** 
%% Solution Using Symbolic Math Toolbox (STB) in 
%% MATLAB Version 6 
%% 
S=dsolve('Dxl=x2,Dx2=-lambda2,Dlambdal=O,Dlambda2=-lambdal, 
xl(O)=1,x2(O)=2,lambdal(2)=x12-4,lambda2(2)=x22-2') 
t='2' ; 
S2=solve(subs(S.xl)-'x12',subs(S.x2)-'x22','x12,x22'); 
%% solves for xl(t=2) and x2(t=2) 
x12=S2.x12; 
x22=S2.x22; 
clear t 

S = 
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lambdal: [lxl sym] 
lambda2: [lxl sym] 

xl: [lxl sym] 
x2: [lxl sym] 

xl=subs(S.xl) 

xl = 

x2=subs(S.x2) 

x2 = 

lambdal=subs(S.lambdal) 

lambdal 

3/7 

lambda2=subs(S.lambda2) 

lambda2 = 

4/7-3/7*t 

%% Plot command is used for which we need to 
%% convert the symbolic values to numerical values. 
j=l; 
for tp=O: .02:2 
t=sym(tp); 
xlp(j)=double(subs(S.xl»; 
%% subs substitutes S.xl to xlp 
x2p(j)=double(subs(S.x2»; 
%% double converts symbolic to numeric 
up(j)=-double(subs(S.lambda2»; 
%% optimal control u = -lambda_2 
tl(j)=tp; 
j=j+l; 
end 
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plot(t1,x1p, 'k' ,t1,x2p, 'k' ,t1,up, 'k: ') 
xlabel ('t') 
gtext (' x_1 (t) ') 
gtext (' x_2 (t) ') 
gt ext ( 'u ( t) , ) 

*************************************************************** 

It is easy to see that the previous solutions for xi(t)~2(t), Ai (t), A2(t), 
and u*(t) = -A2(t) obtained by using MATLAB\0 are the same 
as those given by (2.7.78) obtained analytically. 

The optimal control and states for Example 2.15 are plotted in 
Figure 2.14. 
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Figure 2.14 Optimal Control and States for Example 2.15 

2.8 Summary of Variational Approach 
In this section, we summarize the development of the topics covered so 
far in obtaining optimal conditions using the calculus of variations. The 
development is carried out in different stages as follows. Also shown is 
the systematic link between various stages of development. 
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2.8.1 Stage I: Optimization of a Functional 

Consider the optimal of 

it! 
J = V(x(t), x(t), t)dt 

to 

with the given boundary conditions 

x(to) fixed and x(tj) free. 
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(2.8.1) 

(2.8.2) 

Then, the optimal function x* (t) should satisfy the Euler-Lagrange 
equation 

(8V) _ ~ (8V) _ 0 
8x * dt 8x * - . 

(2.8.3) 

The general boundary condition to be satisfied at the free-final point 
is given by [79] 

(2.8.4) 

This boundary condition is to be modified depending on the nature 
of the given t j and x( t j ). Although the previous general boundary 
condition is not derived in this book, it can be easily seen to be similar 
to the general boundary condition (2.7.26) in terms of the Lagrangian 
which embeds a performance index and a dynamical plant into a single 
augmented performance index with integrand C. 

The sufficient condition for optimum is the Legendre condition given 
by 

(82V) 
8x2 * > 0 

for minimum (2.8.5) 

and 

(82V) 
8x2 * < 0 

for maximum. (2.8.6) 
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2.8.2 Stage II: Optimization of a Functional with 
Condition 

Consider the optimization of a functional 

l
tf 

J = V(x(t), x(t), t)dt 
to 

(2.8.7) 

with given boundary values as 

x(to) fixed and x(t,) free, (2.8.8) 

and the condition relation 

g(x(t), x(t), t) = O. (2.8.9) 

Here, the condition (2.8.9) is absorbed by forming the augmented func­
tional 

l
tf 

Ja = £(x(t), x(t), .x(t), t)dt 
to 

(2.8.10) 

where, .x(t) is the Lagrange multiplier (also called the costate function), 
and £ is the Lagrangian given by 

I £(x(t), x(t), .x(t), t) = V(x(t), x(t), t) + .x'(t)g(x(t), x(t), t)., 

(2.8.11) 

Now, we just use the results of the previous Stage I for the augmented 
functional (2.8.10) except its integrand is £ instead of V. For optimal 
condition, we have the Euler-Lagrange equation (2.8.3) for the aug­
mented functional (2.8.10) given in terms of x(t) and .x(t) as 

(8£) _ ~ (8£) = 0 state equation and 
8x * dt 8x * 

(8£) _ ~ (8£) _ 0 costate equation. 8.x * dt 8>.. *-

(2.8.12) 

(2.8.13) 

Let us note from (2.8.11) that the Lagrangian £ is independent of 
>.. * (t) and that the Euler-Lagrange equation (2.8.13) for the costate .x(t) 
is nothing but the constraint relation (2.8.9). The general boundary 
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condition (2.8.4) to be satisfied at the free-final point (in terms of £) 
is given by 

(2.8.14) 

This boundary condition is to be modified depending on the nature of 
the given tf and x(tf)· 

2.8.3 Stage III: Optimal Control System with 
Lagrangian Formalism 

Here, we consider the standard control system with a plant described 
by [56] 

x(t) = f(x(t), u(t), t), (2.8.15) 

the given boundary conditions as 

x(to) is fixed and x(tf) is free, (2.8.16) 

and the performance index as 

it! 
J(u(t)) = V(x(t), u(t), t)dt. 

to 
(2.8.17) 

Now, we rewrite the plant equation (2.8.15) as the condition relation 
(2.8.9) as 

g(x(t), x(t), u(t), t) = f(x(t), u(t), t) - x(t) = o. (2.8.18) 

Then we form the augmented functional out of the performance index 
(2.8.17) and the condition relation (2.8.18) as 

it! 
Ja(u(t)) = £(x(t), x(t), u(t), A(t), t)dt 

to 
(2.8.19) 

where, the Lagrangian £ is given as 

£ = £(x(t), x(t), u(t), A(t), t) 

= V(x(t), u(t), t) + A'(t) {f(x(t), u(t), t) - x(t)}. (2.8.20) 
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Now we just use the previous results of Stage II. For optimal condition, 
we have the set of Euler-Lagrange equations (2.8.12) and (2.8.13) for 
the augmented functional (2.8.19) given in terms of x(t), '\(t), and u(t) 
as 

( 0£) _ ~ (0£) = 0 state equation, (2.8.21) ox * dt Ox * 

( 0£) _ ~ (0£) _ 0 costate equation, and (2.8.22) 
0'\ * dt {)~ *-

( 0£) _ ~ (8£) = 0 control equation. (2.8.23) ou * dt ou * 

Note from (2.8.20) that the Lagrangian £ is independent of ~ * (t) and 
u*(t) and that the Euler-Lagrange equation (2.8.22) is the same as the 
constraint relation (2.8.18). The general boundary condition (2.8.14) 
to be satisfied at the free-final point becomes 

[c - x'(t) (~) L Otf + (~)~t OX! = O. 
f f 

(2.8.24) 

This boundary condition is to be modified depending on the nature of 
the given tf and x(tf). 

2.8.4 Stage IV: Optimal Control System with 
Hamiltonian Formalism: Pontryagin Principle 

Here, we just transform the previous Lagrangian formalism to Hamil­
tonian formalism by defining the Hamiltonian as [57] 

H(x(t), u(t), '\(t), t) = V(x(t), u(t), t) + ,\'(t)f(x(t), u(t), t) (2.8.25) 

which in terms of the Lagrangian (2.8.20) becomes 

£(x(t), x(t), u(t), '\(t), t) = H(x(t), u(t), '\(t), t) - '\'(t)x(t). (2.8.26) 

Now using (2.8.26), the set of Euler-Lagrange equations (2.8.21) to 
(2.8.23) which are in terms of the Lagrangian, are rewritten in terms 
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of the Hamiltonian as 

(aH) _ ~(-A*) = 0 
ax * dt 

(2.8.27) 

(aH) _ x*(t) - ~(O) = 0 
aA * dt 

(2.8.28) 

(aH) _ ~(O) = 0 
8u * dt 

(2.8.29) 

which in turn are rewritten as 

:ic*(t) = + (~) * state equation, (2.8.30) 

,,*(t) ___ (8H) " costate equation, and ax * 
(2.8.31) 

10 -_+(88
H
U)*1 . . control equation. (2.8.32) 

Similarly using (2.8.26), the boundary condition (2.8.24) is rewritten 
in terms of the Hamiltonian as 

[H - A'(t)X(t) - X'(t)(-A(t))] I*tj 8tf + [-A'(t)] I*tj 8xf = 0 (2.8.33) 

which becomes 

(2.8.34) 

The sufficient condition is 

(~) * > 0 for minimum and (2.8.35) 

( ~:~) * < 0 for maximum. (2.8.36) 

The state, costate, and control equations (2.8.30) to (2.8.32) are solved 
along with the given initial condition (2.8.16) and the final condition 
(2.8.34) leading us to a two-point boundary value problem (TPBVP). 
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Free-Final Point System with Final Cost Function 

This problem is an extension of the problem in Stage IV, with the 
addition of final cost function. We summarize the result risking the 
repetition of some of the equations. Let the plant be described as 

x(t) = f(x(t), u(t), t) (2.8.37) 

and the performance index be 

l
tf 

J(u(t)) = S(x(tf), tf) + V(x(t), u(t), t)dt 
to 

(2.8.38) 

along with the boundary conditions 

x(to) is fixed and x(tf) is free. (2.8.39) 

Now, if we rewrite the performance index (2.8.38) to absorb the final 
cost function S within the integrand, then the results of Stage III can 
be used to get the optimal conditions. Thus we rewrite (2.8.38) as 

rtf [ (8S)' 8S] J1(u(t)) = lto V(x(t), u(t), t) + 8x x(t) + at dt. (2.8.40) 

N ow we repeat the results of Stage III except for the modification of the 
final condition equation (2.8.34). Thus the state, costate and control 
equations are 

x*(t) = + (~~)* state equation (2.8.41 ) 

. * (81-l) A (t) = - -
8x * 

costate equation (2.8.42) 

control equation (2.8.43) 

and the final boundary condition is 

(2.8.44) 
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The sufficient condition for optimum is 

(~) * > 0 for minimum and 

(~) * < 0 for maximum. 
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(2.8.45) 

(2.8.46) 

The state, costate, and control equations (2.8.41) to (2.8.43) are solved 
along with the given initial condition (2.8.39) and the final condition 
(2.8.44), thus this formulation leads us to a TPBVP. 

2.8.5 Salient Features 

We now discuss the various features of the methodology used so far 
in obtaining the optimal conditions through the use of the calculus of 
variations [6, 79, 120, 108]. Also, we need to consider the problems 
discussed above under the various stages of development. So we refer 
to the appropriate relations of, say Stage III or Stage IV during our 
discussion. 

1. Significance of Lagrange Multiplier: The Lagrange multiplier A(t) 
is also called the costate (or adjoint) function. 

(a) The Lagrange multiplier A(t) is introduced to "take care 
of" the constraint relation imposed by the plant equation 
(2.8.15). 

(b) The costate variable A(t) enables us to use the Euler-Lagrange 
equation for each of the variables x(t) and u(t) separately 
as if they were independent of each other although they are 
dependent of each other as per the plant equation. 

2. Lagrangian and Hamiltonian: We defined the Lagrangian and 
Hamiltonian as 

£ = £(x(t), x(t), A(t), u(t), t) 

= V(x(t), u(t), t) 
+A'(t) {f(x(t), u(t), t) - x(t)} 

1t = 1t(x(t) , u(t), A(t), t) 

= V(x(t), u(t), t) 

+A'(t)f(x(t), u(t), t). 

(2.8.47) 

(2.8.48) 



92 Chapter 2: Calculus of Variations and Optimal Control 

In defining the Lagrangian and Hamiltonian we use extensively 
the vector notation, still it should be noted that these £ and 1t 
are scalar functions only. 

3. Optimization of Hamiltonian 

(a) The control equation (2.8.32) indicates the optimization of 
the Hamiltonian w.r.t. the control u(t). That is, the opti­
mization of the original performance index (2.8.17), which is 
a functional subject to the plant equation (2.8.15), is equiv­
alent to the optimization of the Hamiltonian function w.r.t. 
u( t). Thus, we "reduced" our original functional optimiza­
tion problem to an ordinary function optimization problem. 

(b) We note that we assumed unconstrained or unbounded con­
trol u(t) and obtained the control relation 81t/8u = O. 

( c) If u( t) is constrained or bounded as being a member of the 
set U, i.e., u(t) E U, we can no longer take 81t/8u = 0, 
since u( t), so calculated, may lie outside the range of the 
permissible region U. In practice, the control u(t) is always 
limited by such things as saturation of amplifiers, speed of 
a motor, or thrust of a rocket. The constrained optimal 
control systems are discussed in Chapter 7. 

(d) Regardless of any constraints on u(t), Pontryagin had shown 
that u(t) must still be chosen to minimize the Hamiltonian. 
A rigorous proof of the fact that u( t) must be chosen to op­
timize 1t function is Pontryagin's most notable contribution 
to optimal control theory. For this reason, the approach is 
often called Pontryagin Principle. So in the case of con­
strained control, it is shown that 

min 1t(x*(t), .x*(t), u(t), t) = 1t(x*(t), .x*(t), u*(t), t) 
uEU 

(2.8.49) 

or equivalently 

11t(x*(t), .x*(t), u*(t), t) :::; 1t(x*(t), .x*(t), u(t), t).1 

(2.8.50) 

4. Pontryagin Maximum Principle: Originally, Pontryagin used a 
slightly different performance index which is maximized rather 
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than minimized and hence it is called Pontryagin Maximum Prin­
ciple. For this reason, the Hamiltonian is also sometimes called 
Pontryagin H-function. Let us note that minimization of the per­
formance index J is equivalent to the maximization of -J. Then, 
if we define the Hamiltonian as 

H(x(t), u(t), A(t), t) = - V(x(t), u(t), t) + 5..' (t)f(x(t), u(t), t) 

(2.8.51) 

we have Maximum Principle. Further discussion on Pontryagin 
Principle is given in Chapter 6. 

5. Hamiltonian at the Optimal Condition: At the optimal condition 
the Hamiltonian can be written as 

H* = H* (x* (t), u* (t), A * (t), t) 
dH* dH* 

dt dt 

= (~~) ~ x*(t) + (:)~ i*(t) + (~~)~ u*(t) 

+ (a;:) * . (2.8.52) 

Using the state, costate and control equations (2.8.30) to (2.8.32) 
in the previous equation, we get 

(2.8.53) 

We observe that along the optimal trajectory, the total derivative 
of H w.r.t. time is the same as the partial derivative of H w.r.t. 
time. If H does not depend on t explicitly, then 

~I=o 
~ 

(2.8.54) 

and 1i is constant w.r. t. the time t along the optimal trajectory. 

6. Two-Point Boundary Value Problem (TPBVP): As seen earlier, 
the optimal control problem of a dynamical system leads to a 
TPBVP. 
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Open-Loop u*(t) 
Plant 

x*(t) 
Optimal Controller 

.. .. 

Figure 2.15 Open-Loop Optimal Control 

(a) The state and costate equations (2.8.30) and (2.8.32) are 
solved using the initial and final conditions. In general, these 
are nonlinear, time varying and we may have to resort to 
numerical methods for their solutions. 

(b) We note that the state and costate equations are the same 
for any kind of boundary conditions. 

( c) For the optimal control system, although obtaining the state 
and costate equations is very easy, the computation of their 
solutions is quite tedious. This is the unfortunate feature 
of optimal control theory. It is the price one must pay for 
demanding the best performance from a system. One has to 
weigh the optimization of the system against the computa­
tional burden. 

7. Open-Loop Optimal Control: In solving the TPBVP arising due 
to the state and costate equations, and then substituting in the 
control equation, we get only the open-loop optimal control as 
shown in Figure 2.15. Here, one has to construct or realize an 
open-loop optimal controller (OLOC) and in many cases it is 
very tedious. Also, changes in plant parameters are not taken 
into account by the OLOC. This prompts us to think in terms 
of a closed-loop optimal control (CLOC), i.e., to obtain optimal 
control u*(t) in terms of the state x*(t) as shown in Figure 2.16. 
This CLOC will have many advantages such as sensitive to plant 
parameter variations and simplified construction of the controller. 
The closed-loop optimal control systems are discussed in Chap­
ter 7. 
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u*(t) .. Plant x*(t) 
r/ • 
~ -

Closed-Loop +-
Optimal Controller 

Figure 2.16 Closed-Loop Optimal Control 
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2.9 Problems 

1. Make reasonable assumptions wherever necessary. 

2. Use MATLAB© wherever possible to solve the problems and 
plot all the optimal controls and states for all problems. Provide 
the relevant MATLAB© m files. 

Problem 2.1 Find the extremal of the following functional 

with the initial condition as x(O) = 0 and the final condition as x(2) = 

5. 

Problem 2.2 Find the extremal of the functional 

to satisfy the boundary conditions x( -2) = 3, and x(O) = O. 

Problem 2.3 Find the extremal for the following functional 

with x(l) = 1 and x(2) = 10. 

Problem 2.4 Consider the extremization of a functional which is de­
pendent on derivatives higher than the first derivative x(t) such as 

i t! 
J(x( t), t) = V(x( t), x( t), i(t), t)dt. 

to 

with fixed-end point conditions. Show that the corresponding Euler­
Lagrange equation is given by 
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Similarly, show that, in general, for extremization of 

i
t! 

J = V ( x ( t ), ± ( t) , x ( t), ... , x (r) ( t), t) dt 
to 

with fixed-end point conditions, the Euler-Lagrange equation becomes 

Problem 2.5 A first order system is given by 

±(t) = ax(t) + bu(t) 

and the performance index is 

lint! J = - (qx2 (t) + ru2 (t))dt 
2 0 

where, x(to) = Xo and x(tf) is free and tf being fixed. Show that the 
optimal state x* (t) is given by 

*( ) _ sinh(3(tf - t) 
x t - Xo . h(3 , 

S'ln tf 

Problem 2.6 A mechanical system is described by 

x(t) = u(t) 

find the optimal control and the states by minimizing 

J = ~ r5 
u2(t)dt 

2 10 
such that the boundary conditions are 

x(t = 0) = 2; x(t = 5) = 0; ±(t = 0) = 2; ±(t = 5) = O. 

Problem 2.7 For the first order system 

dx 
dt = -x(t) + u(t) 

find the optimal control u* (t) to minimize 

J = If [x2 (t) + u2 (t)]dt 

where, tf is unspecified, and x(O) = 5 and x(tf) = o. Also find tf· 
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Problem 2.8 Find the optimal control u* (t) of the plant 

Xl(t)=X2(t); Xl(O) =3, xl(2)=0 

X2(t) = -2Xl(t) + 5u(t); X2(0) = 5, x2(2) = 0 

which minimizes the performance index 

J = ~ l [xM + u2
(t)] dt. 

Problem 2.9 A second order plant is described by 

Xl(t) =X2(t) 

X2(t) = -2Xl(t) - 3X2(t) + 5u(t) 

and the cost function is 

J = f" [xi(t) + u2(t)Jdt. 

Find the optimal control, when Xl(O) = 3 and X2(0) = 2. 

Problem 2.10 For a second order system 

Xl(t) = X2(t) 

X2(t) = -2Xl(t) + 3u(t) 

with performance index 

(7r/2 
J = 0.5xi(1T/2) + io 0.5u2(t)dt 

and boundary conditions x(O) = [0 1]' and x(t j) is free, find the opti­
mal control. 

Problem 2.11 Find the optimal control for the plant 

Xl(t)=X2(t) 

X2(t) = -2Xl(t) + 3u(t) 

with performance criterion 

121 2 
J = "2Fll [Xl(tj) - 4] + "2F22 [X2(tj) - 2] 

1 rtf [ ] +"2 io xi(t) + 2x~(t) + 4u2(t) dt 

and initial conditions as x(O) = [1 2]'. The additional conditions are 
given below. 
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1. Fixed-final conditions Fn = 0, F22 = 0, t f = 2, x(2) = [4 6]'. 

2. Free-final time conditions Fn = 3, F22 = 5, x(tf) = [4 6]' and tf 
is free. 

3. Free-final state conditions, Fn 
x2(2) = 6. 

0, Xl (2) is free and 

4. Free-final time and free-final state conditions, Fn = 3, F22 = 5 
and the final state to have xI(tf) = 4 and x2(tf) to lie on 8(t) = 

-5t + 15. 

Problem 2.12 For the D.C. motor speed control system described 
in Problem 1.1, find the open-loop optimal control to keep the speed 
constant at a particular value and the system to respond for any dis­
turbances from the regulated value. 

Problem 2.13 For the liquid-level control system described in Prob­
lem 1.2, find the open-loop optimal control to keep the liquid level 
constant at a reference value and the system to act only if there is a 
change in the liquid level. 

Problem 2.14 For the inverted pendulum control system described in 
Problem 1.3, find the open-loop, optimal control to keep the pendulum 
in a vertical position. 

Problem 2.15 For the mechanical control system described in Prob­
lem 1.4, find the open-loop, optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

Problem 2.16 For the automobile suspension control system described 
in Problem 1.5, find the open-loop, optimal control to provide minimum 
control energy and passenger comfort. 

Problem 2.17 For the chemical control system described in Prob­
lem 1.6, find the open-loop, optimal control to keep the system at 
equilibrium condition and act only if there is a disturbance. 

@@@@@@@@@@@@@@@ 




