Module 1: State Space Representation and Feedback Control

Module 2: Nonlinear System Analysis

Module 3: Stability Analysis Using Lyapunov Methods

Module 4: Optimal Control Theory

Design of Model Reference Adaptive Control Systems (MRAC) using MIT Rule

Designing a Model Reference Adaptive Control (MRAC) system using the MIT Rule is a classical approach in adaptive control. Below is a detailed breakdown of how this design works, including derivation, assumptions, and a simple example.

1. Concept of MRAC with MIT Rule

The goal of MRAC is to design a control system such that the output of the plant y(t)y(t) follows the output of a reference model ym(t)y_m(t), even if the plant parameters are unknown or time-varying.

The MIT Rule is one of the earliest adaptive laws, based on gradient descent to minimize a cost function (typically the squared error).

2. System Setup

Plant (unknown):

yË™(t)=ay(t)+bu(t),

where a,b are unknown

Reference Model:

y˙m(t)=amym(t)+bmr(t)

Control Law (linear):

u(t)=θ(t)r(t)

Where:

  • θ(t) is the adaptive gain to be adjusted

  • r(t)  is the reference input

3. Define Tracking Error:

ε(t)=y(t)−ym(t)

4. MIT Rule Adaptation Law

 

We define a cost function:

J(θ)=1/2 ε^2(t)

Use gradient descent to update θ:

 

dθdt=−γ∂J∂θ=−γε(t)∂ε∂θfrac{dtheta}{dt} = -gamma frac{partial J}{partial theta} = -gamma varepsilon(t) frac{partial varepsilon}{partial theta}5. Computing Sensitivity ∂ε∂θfrac{partial varepsilon}{partial theta}

Assume the plant is:

y˙(t)=ay(t)+bθr(t)dot{y}(t) = a y(t) + b theta r(t)

Then,

dεdθ=ddθ(y−ym)=dydθ−0=dydθfrac{dvarepsilon}{dtheta} = frac{d}{dtheta}(y – y_m) = frac{dy}{dtheta} – 0 = frac{dy}{dtheta}

Since y˙=ay+bθrdot{y} = a y + b theta r, then:

dydθ=br(t)frac{dy}{dtheta} = b r(t)

So,

dθdt=−γε(t)br(t)frac{dtheta}{dt} = -gamma varepsilon(t) b r(t)

But bb is unknown, so we approximate or absorb it into γgamma. Final adaptation law:

dθdt=−γε(t)r(t)boxed{ frac{dtheta}{dt} = -gamma varepsilon(t) r(t) }

6. Summary of MRAC Design Using MIT Rule

Element Equation
Plant yË™=ay+budot{y} = a y + b u
Reference Model y˙m=amym+bmrdot{y}_m = a_m y_m + b_m r
Control Law u=θ(t)ru = theta(t) r
Tracking Error ε=y−ymvarepsilon = y – y_m
Adaptation Law dθdt=−γεrfrac{dtheta}{dt} = -gamma varepsilon r

7. Simple Numerical Example

Let:

  • Reference model: yË™m=−2ym+2rdot{y}_m = -2 y_m + 2 r

  • Plant: yË™=−1y+θrdot{y} = -1 y + theta r, where θtheta is adaptive

  • γ=1gamma = 1

  • r(t)=1r(t) = 1

Then:

  • ε=y−ymvarepsilon = y – y_m

  • dθdt=−ε⋅1frac{dtheta}{dt} = -varepsilon cdot 1

Simulation Goal:

Make y(t)→ym(t)y(t) to y_m(t) by adjusting θ(t)theta(t)

 

No Attachment Found
No Attachment Found