Module 1: State Space Representation and Feedback Control

Module 2: Nonlinear System Analysis

Module 3: Stability Analysis Using Lyapunov Methods

Module 4: Optimal Control Theory

Design of Model Reference Adaptive Control Systems (MRAC) using Lyapunov Stability Theorem

1. Introduction to MRAC

Model Reference Adaptive Control (MRAC) is a class of adaptive control strategies where the control system is designed to make the output of the plant follow a desired reference model.

  • Objective: Ensure that the plant output y(t)y(t) follows the reference model output ym(t)y_m(t) despite unknown or varying plant parameters.


2. System Description

Plant (Unknown Parameters):

xË™(t)=Ax(t)+Bu(t)dot{x}(t) = A x(t) + B u(t)

or for SISO (Single Input Single Output) system:

y˙(t)=ay(t)+bu(t),a,b unknowndot{y}(t) = a y(t) + b u(t), quad a, b text{ unknown}

Reference Model:

y˙m(t)=amym(t)+bmr(t)dot{y}_m(t) = a_m y_m(t) + b_m r(t)

where:

  • r(t)r(t) is the reference input.

  • ym(t)y_m(t) is the desired output.

  • am,bma_m, b_m are known constants.


3. Control Law (Adaptive Controller Structure)

Define the adaptive control law as:

u(t)=θ1(t)r(t)+θ2(t)y(t)u(t) = theta_1(t) r(t) + theta_2(t) y(t)

where θ1(t)theta_1(t) and θ2(t)theta_2(t) are time-varying adaptive parameters to be tuned.


4. Tracking Error Definition

Define the tracking error:

e(t)=y(t)−ym(t)e(t) = y(t) – y_m(t)

The goal is to design adaptation laws for θ1(t)theta_1(t) and θ2(t)theta_2(t) such that e(t)→0e(t) rightarrow 0 as t→∞t rightarrow infty.


5. Error Dynamics

Substitute control law into the plant model and subtract the reference model:

eË™(t)=yË™(t)−yË™m(t)dot{e}(t) = dot{y}(t) – dot{y}_m(t)

Using plant:

y˙=ay+b(θ1r+θ2y)dot{y} = a y + b (theta_1 r + theta_2 y)

Using reference model:

y˙m=amym+bmrdot{y}_m = a_m y_m + b_m r

Hence:

eË™=ay+b(θ1r+θ2y)−amym−bmrdot{e} = a y + b(theta_1 r + theta_2 y) – a_m y_m – b_m r

Since e=y−ym⇒y=e+yme = y – y_m Rightarrow y = e + y_m, substitute:

eË™=a(e+ym)+b(θ1r+θ2(e+ym))−amym−bmrdot{e} = a(e + y_m) + b(theta_1 r + theta_2 (e + y_m)) – a_m y_m – b_m r

Simplify to:

eË™=ae+aym+bθ1r+bθ2e+bθ2ym−amym−bmrdot{e} = a e + a y_m + b theta_1 r + b theta_2 e + b theta_2 y_m – a_m y_m – b_m r

Grouping terms:

eË™=(a+bθ2)e+(aym+bθ2ym−amym)+(bθ1r−bmr)dot{e} = (a + b theta_2) e + (a y_m + b theta_2 y_m – a_m y_m) + (b theta_1 r – b_m r)

Let’s define:

θ~1=θ1−θ1∗,θ~2=θ2−θ2∗tilde{theta}_1 = theta_1 – theta_1^*, quad tilde{theta}_2 = theta_2 – theta_2^*

where:

θ1∗=bmb,θ2∗=am−abtheta_1^* = frac{b_m}{b}, quad theta_2^* = frac{a_m – a}{b}

Then error dynamics simplify to:

e˙=(a+bθ2∗+bθ~2)e+bθ~1rdot{e} = (a + b theta_2^* + b tilde{theta}_2) e + b tilde{theta}_1 r

But with substitution:

a+bθ2∗=am⇒e˙=ame+bθ~1r+bθ~2ya + b theta_2^* = a_m Rightarrow dot{e} = a_m e + b tilde{theta}_1 r + b tilde{theta}_2 y


6. Lyapunov Candidate Function

Choose a Lyapunov function:

V(e,θ~1,θ~2)=12e2+12γ1θ~12+12γ2θ~22V(e, tilde{theta}_1, tilde{theta}_2) = frac{1}{2} e^2 + frac{1}{2 gamma_1} tilde{theta}_1^2 + frac{1}{2 gamma_2} tilde{theta}_2^2

where γ1,γ2>0gamma_1, gamma_2 > 0 are adaptation gains.


7. Time Derivative of Lyapunov Function

V˙=ee˙+1γ1θ~1θ~˙1+1γ2θ~2θ~˙2dot{V} = e dot{e} + frac{1}{gamma_1} tilde{theta}_1 dot{tilde{theta}}_1 + frac{1}{gamma_2} tilde{theta}_2 dot{tilde{theta}}_2

Substitute e˙=ame+bθ~1r+bθ~2ydot{e} = a_m e + b tilde{theta}_1 r + b tilde{theta}_2 y:

V˙=e(ame+bθ~1r+bθ~2y)+1γ1θ~1θ~˙1+1γ2θ~2θ~˙2dot{V} = e (a_m e + b tilde{theta}_1 r + b tilde{theta}_2 y) + frac{1}{gamma_1} tilde{theta}_1 dot{tilde{theta}}_1 + frac{1}{gamma_2} tilde{theta}_2 dot{tilde{theta}}_2 V˙=ame2+beθ~1r+beθ~2y+1γ1θ~1θ˙1+1γ2θ~2θ˙2dot{V} = a_m e^2 + b e tilde{theta}_1 r + b e tilde{theta}_2 y + frac{1}{gamma_1} tilde{theta}_1 dot{theta}_1 + frac{1}{gamma_2} tilde{theta}_2 dot{theta}_2

To make V˙≤0dot{V} leq 0, choose adaptation laws:


8. Adaptation Laws

θ˙1=−γ1erdot{theta}_1 = – gamma_1 e r θ˙2=−γ2eydot{theta}_2 = – gamma_2 e y

Substituting into V˙dot{V}:

VË™=ame2+beθ~1r+beθ~2y−beθ~1r−beθ~2y=ame2dot{V} = a_m e^2 + b e tilde{theta}_1 r + b e tilde{theta}_2 y – b e tilde{theta}_1 r – b e tilde{theta}_2 y = a_m e^2

If am<0a_m < 0, then V˙<0⇒dot{V} < 0 Rightarrow system is stable.


9. Summary of MRAC Design Using Lyapunov

Component Description
Plant yË™=ay+budot{y} = a y + b u
Reference Model y˙m=amym+bmrdot{y}_m = a_m y_m + b_m r
Control Law u=θ1r+θ2yu = theta_1 r + theta_2 y
Tracking Error e=y−yme = y – y_m
Lyapunov Function V=12e2+12γ1θ~12+12γ2θ~22V = frac{1}{2} e^2 + frac{1}{2gamma_1} tilde{theta}_1^2 + frac{1}{2gamma_2} tilde{theta}_2^2
Adaptation Laws θ˙1=−γ1er,  θ˙2=−γ2eydot{theta}_1 = -gamma_1 e r, ; dot{theta}_2 = -gamma_2 e y

10. Simulation/Block Diagram (Optional for Visuals)

A MATLAB/SIMULINK model can be constructed with:

  • Plant block.

  • Reference model block.

  • Adaptive controller block (implementing θ1,θ2theta_1, theta_2 and their updates).

  • Error calculator e=y−yme = y – y_m.

No Attachment Found
No Attachment Found